FX

Final Structure Foundation Exploration Report

PER-CR25-2.00

Perry County, OH January 20, 2023

Prepared for: **Perry County Engineer's Office** 2645 Old Somerset Road New Lexington, OH 43764

By:

HDR 9999 Carver Road, Suite 210 Blue Ash, OH 45242

Contents

EXEC	UTIV	E SUMMARY 1	1
1	INTR	DDUCTION	2
2	GEO	OGY AND OBSERVATIONS2	2
	2.1	Project Setting	2
	2.2	Soil and Geologic Setting	2
		2.2.1 Project Soils 3 2.2.2 Bedrock Geology 3	
		2.2.2 Bedlock Geology)
3	EXPL	ORATION4	ł
	3.1	Site Reconnaissance4	ł
	3.2	Subsurface Exploration4	ł
	3.3	Laboratory Testing5	5
4	FIND	NGS5	5
5	ANAL	YSES AND RECOMMENDATIONS6	3
	5.1	Determination of Soil Parameters6	3
	5.2	Bridge Foundations7	7
	5.3	Scour Evaluation Parameters8	3
	5.4	Additional Recommendations8	3
		5.4.1 Site Preparation	
		5.4.2 Settlement)
6	LIMIT	ATIONS)
7	REFE	RENCES)

Tables

Table 3-1. Summary of Bridge Structure Borings	4
Table 4-1. Summary of Groundwater Levels	6
Table 5-1. Recommended Soil Strength Parameters	7
Table 5-2. Recommended Axial and Lateral Pile Design Parameters	8
Table 5-3: Scour Analysis Parameters	8

Appendices

Appendix A. Exhibits	A-1
Exhibit No. 1: Site Vicinity and Topographic Map	
Exhibit No. 2: Physiographic Regions of Ohio	
Exhibit No. 3: Surficial Geology	
Exhibit No. 4a: Soil Survey Map - Soil Types	
Exhibit No. 4b: Soil Survey Map - Corrosion of Concrete	
Exhibit No. 4c: Soil Survey Map - Corrosion of Steel	
Exhibit No. 4d: Soil Survey Map - pH Levels	

Exhibit No. 5: Bedrock Geology Map	
Exhibit No. 6: Mines of Ohio Map	
Exhibit No. 7: Bedrock Topography Map	
Exhibit No. 8: Boring Location Plan	
Appendix B. Boring Logs	B-1
Appendix C. Laboratory Testing	C-1
Appendix D. Analyses	D-1

This page is intentionally left blank.

EXECUTIVE SUMMARY

This report summarizes the results of the structure foundation exploration program performed in support of the replacement of Bridge No. PER-CR25-2.00 (SFN 6430899) on Toll Gate Road, County Route 25 (CR 25), over Center Branch Rush Creek in Perry County, Ohio.

The report includes the geotechnical information obtained from borings and laboratory testing performed under this study. The exploration findings, along with the laboratory test results, are presented in more detail in Section 3, as well as in Appendices B and C, of this report.

Based on HDR's assessment of the borings, the generalized soil profile consists of existing fill material over granular and cohesive alluvial and glacial till soils that generally increase in strength with depth. Further discussion on the encountered subsurface conditions is located in Section 4.

Given the relatively shallow depth to competent sandstone bedrock (approximately 30 feet), it is anticipated that deep foundations will be utilized to support the new bridge structure. The selected design build team will determine the appropriate foundation type. However, with the proximity of the Center Branch Rush Creek, shallow groundwater, and 15 to 20 feet of soft and/or loose alluvium within the soil profile, pile foundations are anticipated to be the preferred foundation option. The recommended design parameters for the foundation analyses are provided in Section 5 and in Appendix D.

1 INTRODUCTION

FJS

This report summarizes the results of the structure foundation exploration program performed in support of the replacement of Bridge No. PER-CR25-2.00 (SFN 6430899) carrying Toll Gate Road, (CR 25) over Center Branch Rush Creek. The PER-CR25-2.00 project is located in west-central Perry County, approximately 2.4 miles from the border of Fairfield County, as shown on the Site Vicinity Map (Exhibit No. 1) in Appendix A. The work includes the removal of the existing deck and superstructure of the current bridge structure and its replacement with a simply-supported redundant bridge structure. The structure is to be stepped back from the existing bridge abutments, which are to remain in place, with minimal approach work expected. The total project length is 300 feet, from Station 8+50.00 to 11+50.00. The work length is to be determined by the selected design build team (DBT).

This geotechnical study was authorized by the Ohio Department of Transportation (ODOT) on August 31, 2022, under the VAR-STW Geotechnical Engineering Services CEAO 2023-2 contract. The geotechnical services performed under this modification were carried out in general accordance with ODOT's *Specifications for Geotechnical Explorations* (SGE), *Geotechnical Design Manual* (GDM), *Bridge Design Manual* (BDM), and the *Location and Design Manual*, *Volume* 2. All four documents are dated July 2022. The scope of work relative to this exploration report included:

- a visual reconnaissance of the project site,
- review of available soil and geologic information within the project area,
- the development and performance of a subsurface exploration program to evaluate the existing subsurface conditions at the bridge location,
- laboratory testing on selected soil and rock samples in accordance with the requirements of the SGE,
- characterization of a generalized soil profile along with recommended design strength parameters, and
- preparation of this Structure Foundation Exploration report.

This report presents the descriptions and interpretations of the encountered subsurface conditions at the site and provides general geotechnical recommendations to assist in the development of the plans and design of the bridge structure by the DBT.

2 GEOLOGY AND OBSERVATIONS

2.1 Project Setting

This project is located within the west-central portion of Perry County, Ohio in a rural setting surrounded by wooded and agricultural parcels. Elevations along the project site range from about El. 835 outside the bridge limits to approximately El. 820 at the stream crossing.

2.2 Soil and Geologic Setting

A review of the Physiographic Regions of Ohio map (Ohio Division of Geological Survey, 1998) indicates that the project site is located within the Illinoian Glaciated Allegheny Plateau region of the

Glaciated Allegheny Plateaus section of the Appalachian Plateaus province (Exhibit No. 2 in Appendix A). The Illinoian Glaciated Allegheny Plateau region is characterized by dissected, rugged hills, covered with loess and older drift on ridgetops. Elevations in this region generally range from 600 to 1,400 feet above sea level. Soils in the Illinoian Glaciated Allegheny Plateau consist of clayey, Illinoian-age till over deeply buried, soft Devonian-age shales and near-surface Mississippian-age sandstones and shales.

Drainage in the western part of the county is accommodated by Center Branch Rush Creek and its tributaries, which drains into Rush Creek approximately 2 1/2 miles downstream of the project site and two miles west of Junction City. The project site is directly drained by the Center Branch Rush Creek.

According to the Surficial Geology data from the Ohio Department of Natural Resources (ODNR) Division of Geological Survey (Exhibit No. 3 in Appendix A), surficial soils at the site consist of primarily Illinoian-aged loam till deposits (Ti) and Holocene-aged alluvial deposits (a) with underlying Mississippian and Pennsylvanian bedrock including sandstone, shale, siltstone, clay, limestone, and coal (P, SsSh). The alluvium develops in floodplains of modern streams with soils ranging from silt to clay to boulders, commonly including organic materials. The loam till is composed of till deposits overlain by loess that becomes thicker along bluffs bordering major rivers. The till deposits consist of an unsorted mix of silt, clay, sand, gravel, and boulders deposited directly from several separate ice advances. The thicknesses of the alluvium and loam till deposits at the project site are approximately 25 feet.

2.2.1 Project Soils

The USDA Soil Survey of Perry County indicates the most prevalent surficial soil types within the project limits are the silt loams of the Newark (Ne) and Homewood-Westmoreland (HaE2) units as shown in Exhibit No. 4a.

Soils of the Newark silt loam (0 to 3 percent slopes) consist of 85 percent Newark soils, and 15 percent minor components. The frequently flooded Newark soils generally consist of silt and silty clay loams derived from fine, silty alluvium derived from sedimentary rock. The somewhat poorly drained soils are typically located in flood plains with a moderately high to high water capacity.

Soils of the Homewood-Westmoreland silt loam (25 to 40 percent slopes) consist of 45 percent Homewood and similar soils, 35 percent Westmoreland and similar soils, and 20 percent minor components. Homewood-Westmoreland soils generally consist of silt loam and clay loam derived from Illinoian loamy till and loamy colluvium derived from sedimentary rock. The soils are typically located along hills, including back and side slopes with a moderately low to moderately high water capacity.

As shown on Exhibit Nos. 4b through 4d in Appendix A, the soil survey indicates the soils within the project area are considered to have high risk of corrosion to steel, low to moderate risk of corrosion to concrete, and have pH levels of 5.5 and 6.7.

2.2.2 Bedrock Geology

As shown on Exhibit No. 5 (Bedrock Geology Map), the bedrock geology mapped within the project area is the Mississippian-age Logan and Cuyahoga Formations Undivided (Mlc). The Pennsylvanian-age Allegheny and Pottsville Groups, Undivided (IPap) may also be found along the northern and southern extents and/or in areas adjacent to the project site along CR 25. The Logan and Cuyahoga Formations, Undivided generally consist of locally fossiliferous shale, siltstone, and silty to granular sandstone, which are often interbedded, with minor amounts of conglomerate and

thin- to thick-bedded limestone. The Allegheny and Pottsville Groups, Undivided generally consist of locally fossiliferous and partially calcareous shale and thin- to medium-bedded, locally fossiliferous siltstone, with minor amounts of thin- to medium-bedded limestone and very fine to medium-grained sandstone. Coal beds of note within the Allegheny and Pottsville Group include the Upper and Lower Freeport, Middle and Lower Kittanning, Clarion, and Newland-Brookville seams. Perry County was heavily mined in the central and eastern portions of the county, but not at the project site itself. Based on review of the ODNR Mine Maps as shown in Exhibit No. 6 (Mines of Ohio Map), surface coal mining of the Middle Kittanning coal seam was performed approximately 1.5 to 2.0 miles east of the project site. Bedrock elevations in the project area, as shown on Exhibit No. 7 (Bedrock Topography Map), range between about 800 to 850 feet. The contours appear to form a generally northeast-southwest trending channel at the bridge structure.

3 EXPLORATION

3.1 Site Reconnaissance

A visual reconnaissance of the project site and surrounding area was performed by an HDR geotechnical engineer on August 4, 2022 to mark the preliminary boring locations and during the drilling activities on October 19, 2022. The project site is located within a wooded, relatively narrow valley, with the existing bridge located within the low point of a sag curve. The existing bridge is a two-lane structure carrying CR 25 over Center Branch Rush Creek. The bridge is supported by nine approximately 24-inch deep by 9-inch wide steel sections spanning between the two bridge abutments. Each abutment is constructed of seven evenly spaced 12-inch deep by 12-inch wide piles with lagging placed behind piles. The lagging consists of guardrail at the north abutment and concrete panels at the south abutment. The bridge deck consists of corrugated steel decking with an asphaltic concrete overlay.

3.2 Subsurface Exploration

Two borings were drilled as part of the geotechnical exploration program to assess the subsurface conditions within the PER-CR25-2.00 project limits. The locations of the test borings are shown on the Boring Location Plan (Exhibit No. 8) in Appendix A. The test borings were located and marked in the field during the initial visual reconnaissance on August 4, 2022. These as-drilled locations are reflected on the boring plan, the boring logs in Appendix B, and Table 3-1.

Boring Number	Boring Type ¹	Alignment	Station	Offset	Surface (El., feet)	Bottom of Borehole (El., feet)
B-001-0-22	E1	CR 25	9+74	6 ft Lt	830.8	785.8
B-002-0-22	E1	CR 25	10+31	5 ft Lt	831.3	786.3

Table 3-1	. Summary	of	Bridge	Structure	Borings
-----------	-----------	----	--------	-----------	---------

¹ ODOT Boring Designations: Bridge Structure (E1)

The borings were drilled by Central Star Drilling under the supervision of an HDR geotechnical engineer on October 19, 2022, with a Diedrich D-50 track rig. The rig was calibrated on March 7, 2022 and has an energy ratio of 86.8%. All borings were drilled in general accordance with the *Specifications for Geotechnical Explorations* (ODOT revised July 2022) utilizing 3.25-inch internal diameter hollow

stem augers to advance the borings to the explored depths. The sampling of the soils was accomplished in accordance with the *Standard Test Method for Penetration Test and Split-Barrel Sampling of Soils*, ASTM D 1586. In the split-barrel sampling procedure, a standard 2-inch outside diameter split-barrel sampling spoon is driven into the ground with a 140-pound hammer falling a distance of 30 inches. The number of blows required to advance the sampling spoon the last 12 inches of a typical 18-inch penetration is recorded as the standard penetration test (SPT) resistance or N_{SPT}-value. The N_{SPT}-value is then corrected to an energy ratio of 60%, termed N₆₀, which is used for design. An undisturbed soil sample was collected in Boring B-002-0-22 in accordance with the *Standard Practice for Thin-Walled Tube Sampling of Soils for Geotechnical Purposes*, ASTM D 1587. The depth of this sample was determined by the HDR geotechnical engineer after review of the encountered subsurface conditions above the undisturbed sample. The collection of two additional undisturbed samples were attempted during the drilling activities. However, the recovery in both instances was minimal.

Sampling of the underlying bedrock was performed in accordance with the *Standard Practice for Rock Core Drilling and Sampling of Rock for Site Investigation*, ASTM D 2113, using an NQ2-size double tube-swivel barrel with a diamond bit.

3.3 Laboratory Testing

The obtained soil and rock samples were visually examined by an HDR geotechnical engineer, and representative soil samples selected for laboratory testing to confirm the field classification and to assess the various engineering properties of the soils. Soil index testing performed by HDR included 24 natural moisture content tests (per ASTM D 2216), 14 Atterberg limit determinations (per ASTM D 4318), and 14 grain size analyses (per ASTM D 422). The results of the soil index tests are presented on the final boring logs located in Appendix B. In addition to the soil index testing, 1 soil unconfined compression test (per ASTM D 2166) and 1 one-dimensional consolidation test (per ASTM D 2435) were performed on the collected undisturbed Shelby tube sample from Boring B-002-0-22, and 2 unconfined compression tests (ASTM D 7012 – Method C) were performed on bedrock samples. Results of these tests are presented on the individual laboratory sheets included in Appendix C.

4 FINDINGS

The generalized soil profile as encountered in the two test borings consists of embankment fill, as found behind the existing abutments, over alluvium and glacial till soils. Bedrock encountered beneath the soil overburden consists of shale and sandstone.

As Borings B-001-0-22 and B-002-0-22 were located within the existing limits of the roadway, the surficial materials consisted of 12 inches of asphalt pavement. Beneath the pavement, approximately 5 to 5.5 feet of fill material was encountered. The overlying fill material was granular, consisting of 3 feet of medium dense to dense Gravel with Sand and Silt (A-2-4) in Boring B-001-0-22 and 1.5 feet of loose Gravel with Sand (A-1-b) in Boring B-002-0-22. The underlying fill material was cohesive in nature. In Boring B-001-0-22, medium stiff to stiff Silt and Clay (A-6a) was encountered, whereas at B-002-0-22, medium stiff to stiff Sandy Silt (A-4a) was encountered. The thickness of the cohesive fill as encountered was 2 feet and 4 feet, respectively.

Alluvial soils were encountered beneath the fill material. The alluvium generally consisted of cohesive layers of very soft to medium stiff gray Sandy Silt (A-4a) and Silt (A-4b); however, roughly 6.5 feet of granular alluvium was also encountered in Boring B-001-0-22. Pocket penetrometer readings in the

cohesive alluvium ranged from 0.25 to 2.0 tsf, with N₆₀-values from 1 to 7 blows per foot (bpf). The 18 inches of Gravel with Sand, Silt, and Clay (A-2-6) encountered from EI. 817.3 to EI. 815.8 and 5 feet of Sandy Silt (A-4a) from EI 815.8 to EI 810.8 in Boring B-002-0-22 generally exhibited a loose relative density, with N₆₀-values of 4 to 7 bpf.

Glacial till was encountered in the borings starting at a depth of 16.5 (El 814.8) to 20 feet (El 810.8) below the existing ground surface (bgs) and extending to the top of bedrock. The till consisted of medium to very dense Gravel with Sand (A-1-b) and hard Silt and Clay (A-6a).

Shale and sandstone bedrock was encountered beneath the till deposits to the boring termination depths of 45 feet. A thin layer of shale was encountered from a depth of 30 to 30.5 feet (EI. 800.8 to EI. 800.3) in Boring B-001-0-22, and 30 to 30.5 ft (EI. 801.3 to EI. 800.8) in Boring B-002-0-22, respectively. The shale was able to be sampled utilizing the split-barrel sampling procedure, with split spoon refusal obtained (N > 50/6"). Sandstone was encountered underlying the shale at a depth of 30.5 to the termination depth (EI. 800.3 to EI. 785.8 and EI. 800.8 to EI. 786.3) in both borings. The sandstone was characterized as slightly weathered and strong to very strong, with a stratum rock quality (SRQD) of 55% to 65%.

Groundwater was encountered in both borings during drilling. As water was introduced during drilling activities to perform rock coring, water levels upon completion were not obtained. Furthermore, the borings were sealed immediately upon completion as the borings were performed within the CR 25 travel lanes, and delayed water readings were not obtained. Groundwater depths and elevations as encountered in the borings are tabulated in Table 4-1 and included on the boring logs in Appendix B.

Table 4-1. Summary of Groundwater Levels

Boring	Depth/Elevation During Drilling (ft)	Notes
B-001-0-22	13.5/El. 817.3	Water added at 30.5 ft. Boring completed the same day.
B-002-1-22	17.5/El. 813.8	Water added at 30.5 ft. Boring completed the same day.

5 ANALYSES AND RECOMMENDATIONS

5.1 Determination of Soil Parameters

Soil parameters were developed primarily from laboratory tests, supplemented by published correlations with SPT data and plasticity indices, recorded pocket penetrometer readings, and our engineering experience and judgement. A summary of the recommended strength parameters and design profile elevations are provided in Table 5-1. Details of the parameter development are located in Appendix D.

	mended Profile	Metarial	ι	Init Wt. ¹	Undra Shear S		Draine Shea Streng	ır
Top Elevation (ft)	Bottom Elevation (ft)	Material	γ _T (pcf)	γ _{eff} (pcf)	Su (psf)	φ' (°)	c' (psf)	φ' (°)
831.0	827.0	Granular Fill	120	120	0	32	0	32
827.0	825.0	Cohesive Fill	110	110	900	0	90	22
825.0	815.0	Very Soft to Soft Cohesive	120	120	500	0	25	16
815.0	811.0	Loose Granular	120	57.6	0	25	0	25
811.0	806.0	Medium Dense to Dense Granular	135	72.6	0	33	0	34
806.0	801.0	Hard Cohesive	140	77.6	4000	0	200	27

Table 5-1. Recommended Soil Strength Parameters

1. Effective unit weights to be used below groundwater (assumed at El 815 in recommended design soil profile).

5.2 Bridge Foundations

The project involves the replacement of an existing single-span structure carrying Toll Gate Road (CR 25) over Center Branch Rush Creek. As this will be a design-build project, providing a recommended foundation type is outside the scope of this study. However, given the 15 feet to 20 feet of soft and/or loose soils overlying the site, and the relatively shallow depth to competent sandstone (approximately 30 feet bgs), it is anticipated that deep foundations will be utilized to support the bridge abutments. With the adjacent creek, shallow groundwater, and granular soil layers encountered within the soil profile, driven or cast-in-place pile foundations rather than drilled shafts are anticipated to be the preferred foundation type to avoid potential complications related to seepage and potential caving of the shaft walls during excavation. As such, Table 5-2 below provides a summary of recommended design parameters for use by the DBT for axial and lateral pile analyses using both APILE and LPILE software programs by Ensoft. Any piles spaced closer than five (5) pile widths must also consider group effects.

Recommen Pro			Unit	Wt. ¹		
Top Elevation (ft)	Bottom Elevation (ft)	Material	үт (pcf)	γ _{Eff} (pcf)	E50	K (pci)
831.0	827.0	Granular Fill	120	120	-	90
827.0	825.0	Cohesive Fill	110	110	0.01	-
825.0	815.0	Very Soft to Soft Cohesive	120	120	0.02	-
815.0	811.0	Loose Granular	120	57.6	-	20
811.0	806.0	Medium Dense to Dense Granular	135	72.6	-	60
806.0	801.0	Hard Cohesive	140	77.6	0.005	N/A

Table 5-2. Recommended Axial and Lateral Pile Design Parameters

Effective unit weights to be used below Groundwater (assumed at El 815 in recommended design soil profile).

5.3 Scour Evaluation Parameters

Continuous sampling of the soils was conducted within each boring for a length of 6 feet beginning from the approximate elevation of the stream bed for Center Branch Rush Creek to assist with the determination of the scour analysis parameters per Section 1302 of the GDM. Table 5-3 below summarizes the sampling depths and respective scour analysis parameters to be utilized by the DBT in determining the predicted scour depth.

Boring	Sample	Depth	D50 Value (mm)	Critical Shear Stress, Tc (psf)	Erosion Category, EC (dim)
	SS-5	820.8	0.0259	0.154	3.91
B-001-0-22	SS-6	818.7	0.0329	0.180	3.87
B-001-0-22	SS-7	817.3	0.9635	0.020	2.18
	SS-8	815.8	0.1258	0.003	1.12
	SS-5	821.8	0.0133	0.108	3.67
B-002-0-22	SS-6	820.3	0.0253	0.157	3.67
D-002-0-22	SS-7	818.8	0.0282	0.167	3.67
	SS-8	817.3	0.0266	0.151	3.61

Table 5-3: Scour Analysis Parameters

5.4 Additional Recommendations

5.4.1 Site Preparation

• Site preparation activities at the bridge should be performed in accordance with Item 201 and Item 202 of the current edition of the CMS. These activities are anticipated to include the

pavement removal, removal of the existing bridge structure, and possible relocation of existing utilities.

5.4.2 Settlement

- As modifications to the vertical roadway alignment are expected to be minor, minimal settlement is anticipated. However, should the vertical alignment be raised as the project moves forward and settlement analyses required, the results of a consolidation test performed on a relatively undisturbed cohesive soil sample collected from Boring B-002-0-22 are located within Appendix C.
- It is anticipated that the bridge foundations will bear on the underlying competent sandstone
 encountered at approximately 30 feet below the existing ground surface. This will limit any
 anticipated settlement of the bridge structure itself. However, additional analyses to estimate
 the magnitude of any drag forces acting on the piles as outlined in section 305.3.2.2 of the
 ODOT BDM using the neutral plane method considering 100% tip resistance mobilization may
 need to be conducted if the roadway profile is raised.

6 LIMITATIONS

This report documents the findings and conclusions of HDR Engineering, Inc., for the geotechnical aspects related to the planning and design of the PER-CR25-2.00 project in Perry County, Ohio. The report has been prepared for the use of the Perry County Engineer's Office for specific application to this project, in accordance with generally accepted engineering practice. No warranty, expressed or implied, is made. Any analyses or recommendations submitted are based on the field explorations performed at the locations indicated, on specific laboratory tests on individual samples taken during this exploration, and information obtained from outside sources. The report and analyses do not reflect variations that could occur between borings or at other points in time. Variations in conditions, if any, may become evident during the construction period, at which time a re-evaluation of the recommendations may become necessary. In the event of such changes, the recommendations and changes should be reviewed by HDR's geotechnical staff.

7 REFERENCES

State of Ohio Department of Transportation (Updated July 2022); "Specifications for Geotechnical Explorations."

State of Ohio Department of Transportation (Updated July 2022); "Geotechnical Design Manual."

State of Ohio Department of Transportation (Updated July 2022); "Bridge Design Manual."

State of Ohio Department of Transportation (July 2022); "Location and Design Manual, Volume 2 – Drainage Design."

United States Department of Agriculture: Natural Resources Conservation Service (2022); "Web Soil Survey". <u>http://websoilsurvey.nrcs.usda.gov/app/</u>"

Ohio Department of Natural Resources, Division of Geologic Survey, Pavey, R.R. et. al. (2002); "Surficial geology of the Canton 30x60-Minute quadrangle".

Ohio Department of Natural Resources, Division of Geologic Survey, Swinford, E.M. and Schumacher, G.A., (2001); *"Reconnaissance bedrock geology of the Wilmot, Ohio, quadrangle".*

Ohio Department of Natural Resources, Division of Geologic Survey, Swinford, E.M., Vorbau, K.E., and Schumacher, G.A., (2001); "Bedrock topography of the Wilmot, Ohio, quadrangle".

Ohio Department of Natural Resources, Division of Geologic Survey and Division of Mineral Resources. (2022) "Mines of Ohio". <u>https://gis.ohiodnr.gov/MapViewer/?config=OhioMines#</u>

Appendix A. Exhibits

R0801			Carrys	A 54	www. 70	718
Harnet	disting in the line in the	atte the state to the			45, 1979 - 20	111
Hydrography		National H	lydrography	Dataware.	2002 - 20	119
Contours.		Hatio	stal Hes	Atlan D	WLaset, 20	词过
	Multiple se					
	Multiple st Survey System	ounces; see			017 20	119 118 117

G:\OHIO\ODDT\ODDT-OCEA STATEWIDE CONTRACT PROJECTS\PER-CR25-2.00_10354468_ARCGISPRO\7.2_WIP\MAP_DOCS\HDR_PROJECT.APRX DATE: 11/21/2022

G:\OHIO\ODDT\ODDT-OCEA STATEWIDE CONTRACT PROJECTS\PER-CR25-2.00_10354468_ARCGISPRO\7.2_WIPMAP_DOCS\HDR_PROJECT.APRX DATE: 11/21/2022

Till Plains	u Calculated: LSH Checked: DMV
Fill Plain	
Dhio Clayey Till Plain	led be
ea Headlands of the Till Plain	ilat
Ohio Loamy Till Plain	leu
on City-Bloomer Transitional Terra	
itewater Interlobate Plain	
lefontaine Upland d River Interlobate Plain	
by Plain	
umbus Lowland	
Till Plain	0
Illinoian Till Plain	ie ie
aciated Low Plateau	Ō
Huron-Erie Lake Plains	of
e Lake Plains	S
ulding Clay Basin	
numee Sand Plains	
oodville Lake-Plain Reefs	5
ndlay Embayment	l ž
storia Lake-Plain Shoals	
d 7.6b. Bellevue-Castalia Karst Pla	in -E
e Plain	d d
rea Headlands of the Erie Lake Plai	n E
Bluegrass Section	: Physiographic Regions of Ohio
uegrass Region	
laciated Allegheny Plateaus	h v
uck-Glaciated Pittsburgh Plateau	L
n-Canton Interlobate Plateau	8
an Glaciated Allegheny Plateau	Ġ
d River Low Plateau	Ž
Grand River Finger-Lake Plain	
Allegheny Plateaus	Exhibit No. 2
ingum-Pittsburgh Plateau	
nee-Mississippian Plateau	
on Plateau	
etta Plateau	
Little Switzerland Plateau	Project: PER-CR25-2.00 PID: 117332
nal boundary	(25-
n/deposits outside Huron-Erie L	ake Plains
	ER
blogical Survey, 1998	17 ît 17 3 P
ons of Ohio,	je c
al Resources, Division of Geological Surve	
al Resources, Division of Geological Surve	

G:\OHIO\ODOT\ODT-OCEA STATEWIDE CONTRACT PROJECTS\PER-CR25-2.00_10354468_ARCGISPRO\7.2_WIPMAP_DOCS\HDR_PROJECT.APRX DATE: 11/21/2022

G:\OHIO\ODOT\ODT-OCEA STATEWIDE CONTRACT PROJECTS\PER-CR25-2.00_10354468_ARCGISPRO\7.2_WIP\MAP_DOCS\HDR_PROJECT.APRX DATE: 11/21/2022

Map Unit Legend HaE2 - Homewood-Westmoreland silt loams, 25 to 40 percent slopes, eroded Ne - Newark silt loam, 0 to 3 percent slopes,	Calculated: LSH Checked: DMV
frequently flooded MAP INFORMATION The soil surveys that comprise your AOI were mapped at 1:15,800. Warning: Soil Map may not be valid at this scale. Enlargement of maps beyond the scale of mapping can cause misunderstanding of the detail of mapping and accuracy of soil line placement. The maps do not show the small areas of contrasting soils that could have been shown at a more detailed scale. Please rely on the bar scale on each map sheet for map measurements	Soil Survey Map Types
measurements. Source of Map: Natural Resources Conservation Service Web Soil Survey URL: Coordinate System: Web Mercator (EPSG:3857) Maps from the Web Soil Survey are based on the Web Mercator projection, which preserves direction and shape but distorts distance and area. A projection that preserves area, such as the Albers equal-area conic projection, should be used if more accurate calculations of distance or area are required. This product is generated from the USDA-NRCS certified data as of the version date(s) listed below. Soil Survey Area: Perry County, Ohio Survey Area Data: Version 19, Sep 9, 2022 Soil map units are labeled (as space allows) for map scales 1:50,000 or larger. Date(s) aerial images were photographed: Oct 8, 2020—Nov 7,	Exhibit No. 4a: Soil S Soil Types
2020 The orthophoto or other base map on which the soil lines were compiled and digitized probably differs from the background imagery displayed on these maps. As a result, some minor shifting of map unit boundaries may be evident.	
Source: Web Soil Survey 11/2022 https://websoilsurvey.sc.egov.usda.gov/App/WebSoilSurvey.aspx	Project: PER-CR25-2.00 PID: 117332

Corrosion of Concrete Map Unit Legend HaE2 - Homewood-Westmoreland silt loams -Moderate rating Ne - Newark silt loam - Low rating	Calculated: LSH Checked: DMV
<section-header><text><text><text><text><text><text><text><text><text><text><text></text></text></text></text></text></text></text></text></text></text></text></section-header>	Exhibit No. 4b: Soil Survey Map Corrosion of Concrete
Source: Web Soil Survey 11/2022 https://websoilsurvey.sc.egov.usda.gov/App/WebSoilSurvey.aspx	Project: PER-CR25-2.00 PID: 117332

G:\OHIO\ODDT\ODDT\OCEA STATEWIDE CONTRACT PROJECTS\PER-CR25-2.00_10354468_ARCGISPRO\7.2_WIP\MAP_DOCS\HDR_PROJECT.APRX DATE: 11/21/2022

Corrosion of Steel	LSH DMV
Map Unit Legend	
HaE2 - Homewood-Westmoreland silt loams - High Rating	Calculated: LSH Checked: DMV
Ne - Newark silt loam - High Rating	о
MAP INFORMATION	
The soil surveys that comprise your AOI were mapped at 1:15,800.	
Warning: Soil Map may not be valid at this scale.	d
Enlargement of maps beyond the scale of mapping can cause misunderstanding of the detail of mapping and accuracy of soil line placement. The maps do not show the small areas of contrasting soils that could have been shown at a more detailed scale.	Survey Ma _l Steel
Please rely on the bar scale on each map sheet for map measurements.	Sur Ste
Source of Map: Natural Resources Conservation Service Web Soil Survey URL: Coordinate System: Web Mercator (EPSG:3857)	Soil n of
Maps from the Web Soil Survey are based on the Web Mercator projection, which preserves direction and shape but distorts distance and area. A projection that preserves area, such as the Albers equal-area conic projection, should be used if more accurate calculations of distance or area are required.	it No. 4c: Soil Surv Corrosion of Stee
This product is generated from the USDA-NRCS certified data as of the version date(s) listed below.	Oit N
Soil Survey Area: Perry County, Ohio Survey Area Data: Version 19, Sep 9, 2022	xhik
Soil map units are labeled (as space allows) for map scales 1:50,000 or larger.	ш
Date(s) aerial images were photographed: Oct 8, 2020—Nov 7, 2020	
The orthophoto or other base map on which the soil lines were compiled and digitized probably differs from the background imagery displayed on these maps. As a result, some minor shifting of map unit boundaries may be evident.	
	00
purce: Web Soil Survey 11/2022 tps://websoilSurvey.sc.egov.usda.gov/App/WebSoilSurvey.aspx	Project: PER-CR25-2.00 PID: 117332
	Proje(PID: 1

G:\OHIO\ODDT\ODDT\OCEA STATEWIDE CONTRACT PROJECTS\PER-CR25-2.00_10354468_ARCGISPRO\7.2_WIP\MAP_DOCS\HDR_PROJECT.APRX DATE: 11/21/2022

pH (1 to 1 Water) Map Unit Legend HaE2 - Homewood-Westmoreland silt loams - pH rating 5.5 Ne - Newark silt loam - pH rating 6.7	Calculated: LSH Checked: DMV
MAP INFORMATION	
The soil surveys that comprise your AOI were mapped at 1:15,800.	
Warning: Soil Map may not be valid at this scale.	de
Enlargement of maps beyond the scale of mapping can cause misunderstanding of the detail of mapping and accuracy of soil line placement. The maps do not show the small areas of contrasting soils that could have been shown at a more detailed scale.	Soil Survey Map evels
Please rely on the bar scale on each map sheet for map measurements.	Sur s
Source of Map: Natural Resources Conservation Service Web Soil Survey URL: Coordinate System: Web Mercator (EPSG:3857)	4d: Soil S pH Levels
Maps from the Web Soil Survey are based on the Web Mercator projection, which preserves direction and shape but distorts distance and area. A projection that preserves area, such as the Albers equal-area conic projection, should be used if more accurate calculations of distance or area are required.	ibit No. 4d: pH L
This product is generated from the USDA-NRCS certified data as of the version date(s) listed below.	oit N
Soil Survey Area: Perry County, Ohio Survey Area Data: Version 19, Sep 9, 2022	xh
Soil map units are labeled (as space allows) for map scales 1:50,000 or larger.	ш
Date(s) aerial images were photographed: Oct 8, 2020—Nov 7, 2020	
The orthophoto or other base map on which the soil lines were compiled and digitized probably differs from the background imagery displayed on these maps. As a result, some minor shifting of map unit boundaries may be evident.	
	2.00
	Project: PER-CR25-2.00 PID: 117332
Source: Web Soil Survey 11/2022 https://websoilsurvey.sc.egov.usda.gov/App/WebSoilSurvey.aspx	Project: PEI PID: 117332

G:\OHIO\ODOT\ODT-OCEA STATEWIDE CONTRACT PROJECTS\PER-CR25-2.00 10354468 ARCGISPRO\7.2 WIP\MAP DOCS\HDR PROJECT.APR

BRI

Appendix B. Boring Logs

	PROJECT: <u>PER-CR25-02.00</u> TYPE: BRIDGE	DRILLING FIRM / OPE SAMPLING FIRM / LOO	DRILL RIG: DIEDRICH D-50 TRACK HAMMER: AUTOMATIC HAMMER														EXPLORATION ID B-001-0-22			
	PID: <u>117332</u> SFN: <u>6430899</u>	DRILLING METHOD:		HDR / DCM ' HSA / NQ2			ON DA		3/7/22		ELEV			330.8				4	5.0 ft.	PAGE
	START: <u>10/19/22</u> END: <u>10/19/22</u>	SAMPLING METHOD:	SAMPLING METHOD: SPT / ST / NQ2										G:		39.7	56322	2, -82	29	1 OF 2	
_	MATERIAL DESCRIPT	10N	ELEV.	DEPTHS	SPT/ RQD	N ₆₀	-	SAMPLE			GRAD		<u> </u>	<u> </u>		ERBE	ERG	wc	ODOT CLASS (GI)	HOLE
GP	12 inches Asphalt	X	830.8		RQD		(%)	ID	(tsf)	GR	LS	FS	SI	CL	LL	PL	PI	wc	02/100 (01)	SEALEL
BORINGLOGS	MEDIUM DENSE TO DENSE, BROWN, GR. AND SILT, TRACE CLAY, MOIST (FILL)	AVEL WITH SAND	× 829.8	- 1 -	11 11 12	33	67	SS-1	-	-	-	-	-	-	-	-	-	8	A-2-4 (V)	
2.00 BOF			0 0•∏ (\\$ 826.8	- 3 -	24			SS-2A	-	56	10	7	22	5	25	18	7	17	A-2-4 (0)	-
R-CR25-2	MEDIUM STIFF TO STIFF, DARK BROWN, LITTLE SAND, MOIST (FILL)	SILT AND CLAY,		- 5 -	75	17	78	SS-2B	0.50	-	-	-	-	-	-	-	-	-	A-6a (V)	
221019_PE	SOFT, GRAY, SILT , SOME SAND, LITTLE C	CLAY, WET	824.8 *** *** ***	- 6 - - 7 -	2 1 2	4	67	SS-3	0.25	-	-	-	-	-	-	-	-	22	A-4b (V)	
G\EAST01\D2962083\202	@ 8' - 10' (ST-4) : Minimal shavings from ins were jarred for moisture testing and visual cla	ide the shelby tube	+ +	- 8 - 9 -			4	ST-4	-	-	-	-	-	-	-	-	-	24	A-4b (V)	-
\EAST01\D	@ 11.0' - 12.0' : Final hammer blow drove sp 12.0'	+ + + + + + + + + + + + + + + + + + + +	*** *** *** *** *** ***	10 11	1 0 1	1	100	SS-5	0.25	0	1	26	54	19	24	17	7	29	A-4b (8)	
/ORKING	SOFT, GRAY, SILT , SOME SAND, LITTLE (GRAVEL, WET	CLAY, TRACE	+++ +++ +++ +++ *+1 817.3		WOH 3 2	7	11	SS-6	0.25	8	2	20	57	13	23	18	5	25	A-4b (7)	
- C:\PWW	LOOSE, GRAY, GRAVEL WITH SAND, SIL WET		815.8	- 14 - - 15 -	5 3 2	7	67	SS-7	-	44	13	33	7	3	31	18	13	22	A-2-6 (0)	
22 11:40	LOOSE, GRAY, SANDY SILT , TRACE GRAY CLAY, WET	/EL, TRACE		- 16 -	1 1 2	4	89	SS-8	-	6	10	48	29	7	16	15	1	28	A-4a (0)	-
<u> 501 - 11/29/</u>	@ 18.5' - 18.9' : Gray Clay			- 17 - - 18 -	WOH 1 2	4	100	SS-9	-	-	-	-	-	-	-	-	-	29	A-4a (V)	-
9.101			810.8	- 19 - - 20 -	40															-
HO - (11)	VERY DENSE, GRAY, GRAVEL WITH SAN TRACE CLAY, WET	J, LIIILE SILI,		- 21 -	10 13 22	51	67	SS-10	-	49	14	14	17	6	18	NP	NP	15	A-1-b (0)	-
NG LUG (8.5 X				- 22 - - 23 - - 24 -																
	HARD, GRAY, SILT AND CLAY, TRACE SA	ND, DAMP	805.8	- 25 - - 26 -	7 9 14	33	100	SS-11	4.00	0	3	2	60	35	30	19	11	17	A-6a (8)	
			800.8	- 27 - - 28 - - 29 -																

SANDSTONE,		TERIAL DESCRI	PTION						OFFSE		9714	4, 6' LT.		IARI	: 10/	19/22	2 El	·D	10/1		 	= 2 B-00	1-0-22
SANDSTONE,	SUGHTI					ELEV.	DEP	гне	SPT/	N ₆₀		SAMPLE		(GRAD		N (%		ATT	ERB		ODOT	HOLE
SANDSTONE,	SUGHT	AND NOTES				800.8			RQD -50/3"		(%)	ID SS-12	(tsf)	GR	CS	FS	SI	CL	LL	PL	WC	CLASS (GI) Rock (V)	
BEDDED, JOIN MODERATELY OPEN, SLIGHT CONDITIONS; @ 31.1' - 31.5'	GRAY, SLIGHTLY WEATHERED, WEAK. BO0.3 STONE, GRAY, SLIGHTLY WEATHERED, VERY IG, FINE TO MEDIUM GRAINED, THIN TO MEDIUM D, JOINT AND BEDDING DISCONTINUITIES, RATELY FRACTURED TO FRACTURED, TIGHT TO SLIGHTLY ROUGH, VERY BLOCKY, GOOD SURFACE TIONS; RQD 55%, REC 100%. '- 31.5' : Interbedded Shale					000.0		- 31 - - 32 - - 33 - - 34 -	22		100	NQ2-1										CORE	
@ 33.8' - 34.3' @ 35.0' - 35.7'								- 35 - - 36 - - 37 - - 38 - - 39 -	65		100	NQ2-2										CORE	•
						785.8	—ЕОВ—	- 40 - - 41 - - 42 - - 43 - - 44 - - 44 -	73		100	NQ2-3										CORE	
							200-	+3 -															
NOTES: QUI	CKCRETE	CONCRETE USI	ED TO PATO	CH PAVEM	<u>IENT. U</u>	NSUCCE	SSFULLY	<u> ATTEMP</u>		D REC	OVER	ST-4 SAM	IPLE V	VITH	<u>SPT</u> S	<u>Sam</u> f	PLER						

	PROJECT: PER-CR25-02.00 YPE: BRIDGE	DRILLING FIRM / OPER		ENTRAL STAR / TS HDR / DCM	DRILL RIG: <u>DIEDRICH D-50 TRACK</u> HAMMER: <u>AUTOMATIC HAMMER</u>						STAT ALIG		EXPLORATION ID B-002-0-22							
	PID: 117332 SFN: 6430899	DRILLING METHOD:		" HSA / NQ2		BRATI			3/7/22		ELE\		_	831.3		CR-25 L) E		4	5.0 ft.	PAGE
	START: <u>10/19/22</u> END: <u>10/19/22</u>	SAMPLING METHOD:	SP	T / ST / NQ2						LAT /							.3242	20	1 OF 2	
_	MATERIAL DESCRIP	TION	ELEV.	DEPTHS	SPT/ RQD	N ₆₀		SAMPLE			GRAE	-	<u>``</u>	ŕ		ERBE			ODOT CLASS (GI)	HOLE
ЧÖ	12 inches Asphalt	XX	831.3		RQD		(%)	ID	(tsf)	GR	CS	FS	SI	CL	LL	PL	PI	WC	02/00 (01)	SEALED
INGLOGS	LOOSE, BROWN AND GRAY, GRAVEL W SILT, DRY (FILL)	TH SAND, TRACE	830.3 828.8		6 3	9	33	SS-1	-	-	-	-	-	-	-	-	-	9	A-1-b (V)	
BOR	MEDIUM STIFF TO STIFF, GRAY, SANDY	SILT, SOME CLAY,		- 3 -	3															-
PER-CR25-2.00	LITTLE GRAVEL, DAMP (FILL)			- 4 - - 5 -	1 1 4	7	89	SS-2	1.00	12	6	16	45	21	24	19	5	14	A-4a (6)	
PER			824.8		2															-
20221019	SOFT TO MEDIUM STIFF, GRAY, SILT , "A TO LITTLE SAND, WET	ND" CLAY, TRACE	+ + + +		2	4	100	SS-3	0.50	-	-	-	-	-	-	-	-	31	A-4b (V)	-
2962083\.	@ 8.5' - 9.0' : qu = 1000 psf	+++++++++++++++++++++++++++++++++++++++	+ + + + + + + +	- 9 -	1		75	ST-4	1.00	0	1	9	54	36	29	19	10	29	A-4b (8)	-
ST01/D		+++++++++++++++++++++++++++++++++++++++	820.3	- 10 -	່1 1	3	100	SS-5	1.00	1	2	16	50	31	26	19	7	33	A-4b (8)	
KING/EA	VERY SOFT, GRAY, SILT , SOME SAND, L	+++++++++++++++++++++++++++++++++++++++	+ +	12	WOH WOH 1	1	33	SS-6	1.00	0	8	21	51	20	20	19	1	24	A-4b (7)	-
WWOR	SOFT TO MEDIUM STIFF, BROWN AND G SILT, SOME CLAY, MOIST	iray, Sandy		- 13 - - - 14 -	2 2 2	6	100	SS-7	2.00	0	10	23	44	23	25	19	6	22	A-4a (6)	-
1:46 - C:\F				- 15 -	2	4	100	SS-8	1.50	0	5	29	42	24	25	18	7	22	A-4a (6)	-
9/22 1	MEDIUM DENSE, BROWN AND GRAY, GR		814.8	₩ 813.8 - 17 -																
<u></u>	SAND, LITTLE SILT, TRACE CLAY, WET @ 17.5' - 19.5' : Zero recovery in ST-9. Spli driven to recover sample.	t-Spoon sampler		- 18 - - 19 -			0	ST-9	-	-	-	-	-	-	-	-	-	21	A-1-b (V)	
- 0H DO I.0			D 1	- 	6 7 7	20	100	SS-10	-	36	21	19	18	6	20	20	NP	16	A-1-b (0)	
(8.5 X 11)			2 D	- 22																
NG LOG			0 79	- 23 - - 24 -																
OIL BORI			59 D	25 26	⁵ 10	26	56	SS-11	-	-	-	-	-	-	-	-	-	14	A-1-b (V)	-
S 1000 0			29	- 27	8															
STANDARD ODOT SOIL BORING LOG (8.5 X			N N 801.3	28 29																

PID: 117332	SFN:	6430899	PROJECT:	PER-CR	25-02.00	s	TATION /	OFFSE	T:	10+3	1, 5' LT.	S	TART	: 10/	19/22	2 E	ND:	10/1	9/22	_ P	G 2 O	F 2 B-00	2-0-22
	MA	TERIAL DESCRIP	PTION		ELEV.	DEP	тие	SPT/	N	REC	SAMPLE	HP	(GRAD	DATIC	DN (%) _	ATT	ERB	ERG		ODOT	HOLE
		AND NOTES			801.3		100	RQD	N ₆₀	(%)	ID	(tsf)	GR		FS	SI	CL	LL	PL	PI	wc	CLASS (GI)	SEALED
	is. 5, gray, sl Dium grai Edding d Y frctur Dugh, vef	ED, OPEN TO TIC	ERED, STRONG, EDIUM BEDDED, , FRACTURED TO)E;	800.8	TR	- 31 - - 32 - - 33 - - 34 - - 35 -	22	<u> </u>	100/	<u>SS-12</u> NQ2-1				<u> </u>	<u> </u>	<u> </u>	<u> </u>	<u>^ -</u>	<u> </u>		CORE	
@ 40.2' - 41.0)' : 14,247 p	si			786.3	—ЕОВ-	30 37 38 39 39 40 41 42 43 44 45	85		100	NQ2-2											CORE	
NOTES: QU			D TO PATCH PAV , QUANTITIES: T		5 LB. BEN	ITONITE	POWDER	t; 94 LB	. CEM	ENT;	50 GAL. V	VATER	2										

Appendix C. Laboratory Testing

Unconfined Compressive Strength of Cohesive Soils (ASTM D2166)

FC

				AASHTO: T-208 Page	1 of 2
Project Name	: PER-CR	25-2.0			
Project #				Sample # : ST-4	
Project County				Sample Loc. : Boring No. B-002-0-22	
Project State	-			Sample Depth : 8.5' to 9.0'	
Laboratory #	: 1035446	8		Date Tested : 10/31/2022	
Submitted By				Date Reported : 11/2/2022	
Soil Type	: A-4(8)				
Wet Density	: 125.4	pcf		Initial Height: 5.75 in	
Dry Density	: 97.4	pcf		Initial Diameter: 2.84 in	
Moisture	: 28.7	%		Proving Ring : #22734	
RESULTS:	Axial	Corrected	Unit		
	Load	Area	Strain	Stress	
<u>#</u> 1	<u>lbs</u>	<u>sf</u>	<u>%</u>	<u>Ksf</u>	
	0.0	0.04	0.0	0.00	
2	1.9	0.04	0.3	0.04	
3	2.9	0.04	0.5	0.07	
4	3.9	0.04	0.8	0.09	
5	6.8	0.04	1.0	0.15	
6	7.8	0.04	1.3	0.17	
7	8.7	0.04	1.6	0.20	
8	10.7	0.04	1.8	0.24	
9	11.6	0.04	2.1	0.26	
10	14.6	0.04	2.4	0.32	
11	16.5	0.05	2.8	0.37	
12	19.4	0.05	3.1	0.43	
13	21.3	0.05	3.5	0.47	
14	23.3	0.05	3.8	0.51	
15	25.2	0.05	4.2	0.55	
16	27.2	0.05	4.5	0.59	
17	30.1	0.05	4.9	0.65	
18	31.0	0.05	5.2	0.67	
19	33.0	0.05	5.7	0.71	
20	34.9	0.05	6.1	0.75	
21	36.9	0.05	6.5	0.78	
22	38.8	0.05	7.0	0.82	
23	39.8	0.05	7.4	0.84	
24	41.7	0.05	7.8	0.88	
25	42.7	0.05	8.3	0.89	
26	44.6	0.05	8.7	0.93	
27	46.6	0.05	9.6	0.96	
28	48.5	0.05	10.4	0.99	
29	49.5	0.05	11.3	1.00	
30	48.5	0.05	12.2	0.97	
31	44.6	0.05	13.0	0.00	

FC

UNCONFINED COMPRESSION TEST

	Page 2 of 2
Project Name : PER-CR25-2.0	
Project # : 10354468	Sample # : ST-4
Project County : Perry	Sample Loc. : Boring No. B-002-0-22
Project State : Ohio	Sample Depth : 8.5' to 9.0'
Laboratory # : 10354468	Date Tested : 10/31/2022
Submitted By : HDR	Date Reported : 11/2/2022
Soil Type:A-4(8)	
Wet Density : 125.4 pcf	Initial Height: 5.75 in
Dry Density: 97.4 pcf	Initial Diameter : 2.84 in
Moisture : 28.7 %	Proving Ring : #22734
Deg. of Sat. : 100.0 %	SPECIFIC GRAVITY : 2.690
Comments : AASHTO: T-208	

hdrinc.com

1-D Consolidation Properties of Soils Using Incremental Loading (ASTM D2435)

		Summar	y of Consolidation Test Res	Test Date: 11/17/2022 ults
Overburden	Press. (tsf)	0.57	Compression Index, C _c	0.12
Preconsol. P	ress., P _c (tsf)	2.18	Rebound Index, C _r	0.01
Over Consoli	dation Ratio	3.83		
Soil Descript	ion:	Gray Silty Clay		
Project Num	ber:	10354468	Depth: 9.0-9.5	Remarks:
Sample Num	ber:	ST-4	Boring Number: B-002-0-22	ASTM D2435/D2435M-11
Project:	PER-CR25-2	2.0		
Client:	ODOT			
Location:	Ohio			

CONSOLIDATION TEST

		Before	After	Liquid Limits:	29	Test Date:	11/17/2022
Moisture (%):		25.1	18.3	Plastic Limits:	19		
Dry Density (p	ocf):	101.4	115.2	Plasticity Index (%):	10		
Saturation (%):	100.0	100.0	7			
Void Ratio:		0.66	0.46	Specific Gravity:	2.690	MEASURED	
Sample Descri	iption:	Gray Silty Clay					
Project Numb	er:	10354468		Depth: 9.0-9.5	Remarks:		
Sample Numb	er:	ST-4	Bo	ring Number: B-002-0-22	ASTM D243	5/D2435M-11	
Project:	PER-CR25-2.0	0					
Client:	ODOT						
Location:	Ohio						

Test Summary

PER-CR25-2.0
Ohio
10354468
10354468
11/17/2022

Sample Number:	ST-4
Boring Number:	B-002-0-22
Depth:	9.0-9.5
Sample Type:	Undisturbed

Sample Description: Gray Silty Clay Remarks:

Index	Load	Ŭ	Specimen	Height of	Vertical		•	t50 Fitting		
	Sequence tsf	Height in	Height in	Void in	Strain	Void Ratio	Time Min	Time Min	t90 Cv ft²/Day	t50 Cv ft²/Day
0	0.000	0.0000	1.0000	0.0000	0.0000	0.6562	0.0000	0.0000	0.0000	0.0000
0	0.125	0.0179	0.9821	0.3772	1.7900	0.6236	46.6856	11.2210	0.0438	0.0416
1	0.250	0.0294	0.9706	0.3657	2.9400	0.6046	15.5269	3.5701	0.1286	0.1237
2	0.500	0.0407	0.9593	0.3544	4.0700	0.5859	7.9559	1.8388	0.2452	0.2288
3	1.000	0.0525	0.9475	0.3426	5.2500	0.5664	4.4916	1.0633	0.4237	0.3756
4	2.000	0.0688	0.9312	0.3263	6.8800	0.5394	2.9876	0.6668	0.6153	0.5580
5	0.500	0.0660	0.9340	0.3291	6.6000	0.5441	0.0000	0.0000	0.0000	0.0000
6	0.125	0.0603	0.9397	0.3348	6.0300	0.5535	0.0000	0.0000	0.0000	0.0000
7	0.250	0.0610	0.9390	0.3341	6.1000	0.5523	0.0000	0.0000	0.0000	0.0000
8	0.500	0.0632	0.9368	0.3319	6.3200	0.5487	2.2982	0.5821	0.8096	0.6470
9	1.000	0.0662	0.9338	0.3289	6.6200	0.5437	2.2940	0.6475	0.8058	0.5738
10	2.000	0.0771	0.9229	0.3180	7.7100	0.5257	2.2621	0.6050	0.7983	0.5918
11	4.000	0.0876	0.9124	0.3075	8.7600	0.5084	2.7537	0.6050	0.6409	0.5605
12	8.000	0.1032	0.8968	0.2919	10.3200	0.4826	1.4322	0.3308	1.1905	0.9541
13	16.000	0.1237	0.8763	0.2714	12.3700	0.4487	1.0582	0.2477	1.5383	1.1540
14	32.000	0.1462	0.8538	0.2489	14.6200	0.4115	0.8613	0.2025	1.7943	1.2529
15	8.000	0.1425	0.8575	0.2526	14.2500	0.4176	0.0000	0.0000	0.0000	0.0000
16	2.000	0.1364	0.8636	0.2587	13.6400	0.4277	0.0000	0.0000	0.0000	0.0000
17	0.500	0.1282	0.8718	0.2669	12.8200	0.4412	0.0000	0.0000	0.0000	0.0000
18	0.125	0.1186	0.8814	0.2765	11.8600	0.4571	0.0000	0.0000	0.0000	0.0000

Approved By: Kein Elalala

1-D Consolidation Properties of Soils Using Incremental Loading (ASTM D2435)

FC

ASTM: D7012-Method C

UNCONFINED COMPRESSION TEST (ROCK CORE)

PROJECT NAME : PER-C PROJECT NO. : 103544 PROJECT COUNTY : Perry PROJECT STATE : Ohio 1 LABORATORY NO. : HDR SUBMITTED BY :	468	SA SAM DA	SAMPLE NO. : B-001-0-22 AMPLE LOC. : RC-1 IPLE DEPTH : 35.0' to 35.7' TE TESTED : 11/9/2011 REPORTED : 11/11/2022
ROCK DESCRIPTION : NA	T 2050		
Machine Used : ELE C			
Diameter: 1.98 i			Area : 3.09 in ²
Height: 3.92 i	n		Volume : 0.0070 ft ³
RESULTS :			
Air Dry Moisture:	1.5	%	
Air-Dry Density :	158.1	lbs/ft.3	: with
			- Stall
Maximum Stress :	15,571	psi	- The Row The
Elapsed Time :	9:45	min.	
Rate of Loading :	90	lb/sec	
Rate of Loading .	50	10/300	and the second s

Comments :

Approved By : Kin E. Walk

FC

ASTM: D7012-Method C

UNCONFINED COMPRESSION TEST (ROCK CORE)

PROJECT NAME : PER-C PROJECT NO. : 103544 PROJECT COUNTY : Perry PROJECT STATE : Ohio 10 LABORATORY NO. : HDR SUBMITTED BY :	468	SAN SAMPI DATE	MPLE NO. : B-002-0-22 IPLE LOC. : RC-2 LE DEPTH : 40.2' to 41.0' E TESTED : 11/8/2022 EPORTED : 11/11/2022
ROCK DESCRIPTION : NA Machine Used : ELE C Diameter : 1.98 i Height : 3.84 i	n		Area : 3.09 in ² Volume : 0.0069 ft ³
RESULTS : Air Dry Moisture: Air-Dry Density : Maximum Stress : Elapsed Time : Rate of Loading :	4.3 151.5 14,247 8:17 90	% Ibs/ft. ³ psi min. Ib/sec	

Comments :

Approved By : Kin E. Walk

Appendix D. Analyses

Design Profile

	PROJECT: PER-CR25-02.00 TYPE: BRIDGE	DRILLING FIRM / OPERA SAMPLING FIRM / LOGG		ENTRAL STAR / TS HDR / DCM				RICH D-5 DMATIC H		R	STAT ALIG	NME	NT: _		(9+74 CR-2	5	T.	EXPLOR B-001	-0-22
	PID: <u>117332</u> SFN: <u>6430899</u> START: <u>10/19/22</u> END: <u>10/19/22</u>	DRILLING METHOD: SAMPLING METHOD:		' HSA / NQ2 [/ ST / NQ2			ON DA ATIO (8/7/22 86.8		ELEV LAT /				-			45 .32412	5.0 ft. 29	PAGE 1 OF 2
PJ	MATERIAL DESCRIPT AND NOTES	TION	ELEV. 830.8	DEPTHS	SPT/ RQD	N ₆₀	REC (%)	SAMPLE ID	HP (tsf)		GRAD cs		N (% SI) CL	ATT LL	ERBE PL	FRG PI	wc	ODOT CLASS (GI)	HOLE SEALED
DGS.G	12 inches Asphalt		829.8		11															
ORINGLO	MEDIUM DENSE TO DENSE, BROWN, GRA AND SILT, TRACE CLAY, MOIST (FILL) 1 - Granular Fill	AVEL WITH SAND		- 2 -	11 11 <u>12</u>	33	67	SS-1	-	-	-	-	-	-	-	-	-	8	A-2-4 (V)	-
2.00_B			826.8	- 3 -	24			SS-2A	-	56	10	7	22	5	25	18	7	17	A-2-4 (0)	-
ER-CR25-	MEDIUM STIFF TO STIFF, DARK BROWN, LITTLE SAND, MOIST (FILL) 2 - Col	SILT AND CLAY, nesive Fill	824.8	- 4 - 5 - 5	75	17	78	SS-2B	0.50	-	-	-	-	-	-	-	-	-	A-6a (V)	
21019_P	SOFT, GRAY, SILT , SOME SAND, LITTLE C 3 - Very Soft to Soft Coh	++++		- 6 - - - 7 -	2 1 2	4	67	SS-3	0.25	-	-	-	-	-	-	-	-	22	A-4b (V)	
J2962083\202	@ 8' - 10' (ST-4) : Minimal shavings from ins were jarred for moisture testing and visual cla	side the shelby tube		- 8 9 10			4	ST-4	-	-	-	-	-	-	-	-	-	24	A-4b (V)	
EAST01/I	@ 11.0' - 12.0' : Final hammer blow drove sp 12.0'	oon from 11.0' -	818.8	10 	1 0 1	1	100	SS-5	0.25	0	1	26	54	19	24	17	7	29	A-4b (8)	
ORKING	SOFT, GRAY, SILT , SOME SAND, LITTLE C GRAVEL, WET	CLAY, TRACE		- 12 - - ₩ 817 3 - 13 -	WOH	7	11	SS-6	0.25	8	2	20	57	13	23	18	5	25	A-4b (7)	
C:\PWW	LOOSE, GRAY, GRAVEL WITH SAND, SIL T WET	Γ, AND CLAY,	815.8	- 14 -	5 3 2	7	67	SS-7	-	44	13	33	7	3	31	18	13	22	A-2-6 (0)	
2 15:53 -	LOOSE, GRAY, SANDY SILT , TRACE GRAV CLAY, WET	VEL, TRACE		- 15 - - - 16 -	1 1 2	4	89	SS-8	-	6	10	48	29	7	16	15	1	28	A-4a (0)	
11/20/2	4 - Loose Granu	lar		17 - - 18	WOH															-
OT.GDT -	@ 18.5' - 18.9' : Gray Clay		810.8	19	1	4	100	SS-9	-	-	-	-	-	-	-	-	-	29	A-4a (V)	-
11) - OH D	VERY DENSE, GRAY, GRAVEL WITH SAN TRACE CLAY, WET	D, LITTLE SILT,	010.0	20 21	10 13 22	51	67	SS-10	-	49	14	14	17	6	18	NP	NP	15	A-1-b (0)	
OG (8.5 X 1	5 - Medium Dense to Dense G	ranular		- 22 - - 23 -																
RING LOC			805.8	24																
SOIL BO	HARD, GRAY, SILT AND CLAY , TRACE SA	ND, DAMP		25 - - 26	7 9 14	33	100	SS-11	4.00	0	3	2	60	35	30	19	11	17	A-6a (8)	
STANDARD ODOT SOIL	6 - Hard Coh	esive	800.8	- 27 - - 28 - - 29 -																

SHALE, GRAY SANDSTONE, STRONG, FINI		TERIAL DESCRI	PTION						OFFSE		9714	4, 6' LT.		IARI	: 10/	19/22	2 El	·D	10/1		_		= 2 B-00	1-0-22
SANDSTONE,	SUGHTI				ELEV.	DEP [.]	гне	SPT/	N ₆₀		SAMPLE		(GRAD		N (%		ATT	ERB			ODOT	HOLE	
SANDSTONE,	SUGHT	AND NOTES				800.8			RQD -50/3"		(%)	ID SS-12	(tsf)	GR	CS	FS	SI	CL	LL	PL		WC	CLASS (GI) Rock (V)	
BEDDED, JOIN MODERATELY OPEN, SLIGHT CONDITIONS; @ 31.1' - 31.5'	GRAY, SL TO MED IT AND BE FRACTUI LY ROUG RQD 55% : Interbedo	IGHTLY WEATH IUM GRAINED, 1 EDDING DISCON RED TO FRACTU GH, VERY BLOCH , REC 100%. Ided Shale	ERED, VER` THIN TO ME ITINUITIES, JRED, TIGH	EDIUM IT TO		800.3		- 31 - - 32 - - 33 - - 34 -	22		100	NQ2-1											CORE	
@ 33.8' - 34.3' @ 35.0' - 35.7'								- 35 - - 36 - - 37 - - 38 - - 39 -	65		100	NQ2-2											CORE	•
						785.8	—ЕОВ—	- 40 - - 41 - - 42 - - 43 - - 44 - - 44 -	73		100	NQ2-3											CORE	
							200	73																
NOTES: QUI	CKCRETE	CONCRETE USI	ED TO PATO	CH PAVEM	<u>1ENT. U</u>	NSUCCE	SSFULLY	<u> ATTEMP</u>		D REC	OVER	ST-4 SAM	IPLE V	VITH	<u>SPT</u> S	<u>Sam</u> f	PLER							

	PROJECT: PER-CR25-02.00 TYPE: BRIDGE PID: 117332 SFN: 6430899 START: 10/19/22 END: 10/19/22	DRILLING FIRM / OPER. SAMPLING FIRM / LOGO DRILLING METHOD: SAMPLING METHOD:	GER:	ENTRAL STA HDR / DCN HSA / NQ2		HAMI CALII	MER: BRATI				R	STAT ALIGI ELEV LAT /	NMEI ATIO	NT: NN:{			CR-2	EOB:	_T. 4 	5.0 ft.	ATION II 2-0-22 PAGE 1 OF 2
-	MATERIAL DESCRIPT AND NOTES		ELEV.	DEPTH	S		N ₆₀	-	SAMPLE			GRAD	ATIO	N (%) CL		ERB	ERG	<u></u>	ODOT CLASS (GI)	HOLE
OGS.GP	12 inches Asphalt LOOSE, BROWN AND <u>GRAY</u> , GRAVEL WI		831.3	-	 - 1 -	6		(70)			GR		10	51					we		
ORINGL	SILT, DRY (FILL) 1- Granular Fill MEDIUM STIFF TO STIFF, GRAY, SANDY S		828.8	_	- 2 -	3 3	9	33	SS-1	-	-	-	-	-	-	-	-	-	9	A-1-b (V)	
25-2.00_B	LITTLE GRAVEL, DAMP (FILL)				- 3	1	7	89	SS-2	1.00	12	6	16	45	21	24	19	5	14	A-4a (6)	-
PER-CR			824.8	-	- 5 - - 6 -	2															-
022101 <mark>9</mark>	SOFT TO MEDIUM STIFF, GRAY, SILT , "AN TO LITTLE SAND, WET	ID" CLAY, TRACE		-	- 7 -	1 2	4	100	SS-3	0.50	-	-	-	-	-	-	-	-	31	A-4b (V)	
962083\2	@ 8.5' - 9.0' : qu = 1000 psf	+ + + + + + + + + + + + + + + + + +	+++++++++++++++++++++++++++++++++++++++		- 8 -			75	ST-4	1.00	0	1	9	54	36	29	19	10	29	A-4b (8)	_
ST01\D2	3 - Very Soft to Soft Cohe] +++ +++	820.3	-	- 10 - - - 11 -	1 1 1	3	100	SS-5	1.00	1	2	16	50	31	26	19	7	33	A-4b (8)	_
KING\E#	VERY SOFT, GRAY, SILT , SOME SAND, LI	+++++++++++++++++++++++++++++++++++++++	+		- 12	WOH WOH	1	33	SS-6	1.00	0	8	21	51	20	20	19	1	24	A-4b (7)	_
PWWOR	SOFT TO MEDIUM STIFF, BROWN AND GF SILT, SOME CLAY, MOIST	RAY, SANDY		-	- 13 - - - 14	2 2 2	6	100	SS-7	2.00	0	10	23	44	23	25	19	6	22	A-4a (6)	-
15:53 - C:\			014.0		- 15 - - 16	2 1	4	100	SS-8	1.50	0	5	29	42	24	25	18	7	22	A-4a (6)	-
/20/ <mark>22</mark> 1	MEDIUM DENSE, BROWN AND GRAY, GR A SAND, LITTLE SILT, TRACE CLAY, WET	AVEL WITH	814.8	W 813.8	- 17																_
T.GDT - 11	@ 17.5' - 19.5' : Zero recovery in ST-9. Split- driven to recover sample.	Spoon sampler		_	- 18 - - 19 -			0	ST-9	-	-	-	-	-	-	-	-	-	21	A-1-b (V)	
- OH DC			0 7		- 20 - - 21 -	6 7 7	20	100	SS-10	-	36	21	19	18	6	20	20	NP	16	A-1-b (0)	
(8.5 X 11)	5 - Medium Dense to Dense G	ranular	0 T	-	- 22																
NG LOG					- 23 - 24																
SOIL BORI					- 25 - - 26 -	⁵ 10	26	56	SS-11	-	-	-	-	-	-	-	-	-	14	A-1-b (V)	
ODOT S			d d		- 27 -	8															
STANDARD ODOT			N N 1 801.3		- 28 - 29																

PID: 11	17332	SFN:	6430899	PROJECT:	PER-CF	R25-02.00	5	STATION /	OFFSE	T:	10+3	1, 5' LT.	S	TART	: 10/	19/22	2 E	ND:	10/1	9/22	P	PG 2 OF	F 2 B-00	2-0-22
		MAT	TERIAL DESCRI	PTION		ELEV.		THE	SPT/	N	REC	SAMPLE	HP	(GRAD	ATIC	DN (%))	ATT	ERBE	RG		ODOT	HOLE
			AND NOTES		÷	801.3	DEP	0	RQD	N ₆₀	(%)	ID	(tsf)	GR	CS	FS	SI	CL	LL	PL	ΡI	WC	CLASS (GI)	SEALED
	CEOUS TONE, (O MEDIU AND BEI RATELY FLY ROU	GRAY, SLI JM GRAIN DDING DI FRCTURE JGH, VER	IED, THIN TO M SCONTINUITIES ED, OPEN TO TI	, WEAK, ERED, STRONG, EDIUM BEDDED, S, FRACTURED TO GHT APERTURE, D TO FAIR SURFA		<u>800.8</u>	TR	- 31 - - 32 - - 33 - - 34 - - 35 -	22	<u> </u>	<u>\100</u> / 100	<u>SS-12</u> NQ2-1				<u> </u>	<u> </u>	<u> </u>		<u> </u>	<u> </u>		<u>(Rock (V)</u>	
@ 40.2	' - 41.0' :	14,247 ps	si			786.3	EOB-	- 33 - - 36 - - 37 - - 38 - - 39 - - 40 - - 41 - - 41 - - 42 - - 43 - - 43 - - 43 - - 44 - - 45	85		100	NQ2-2											CORE	
NOTES:				ED TO PATCH PAV 3, QUANTITIES: T		5 LB. BEN	ITONITE	POWDEF	2; 94 LB	. CEM	ENT;	50 GAL. V	VATER	2										

Soil Strength Parameter Determination

		Undr	rained Shear S	Strength (Su) (psf)	Dry Unit We	eight (pcf)	Moist Unit W	/t. (pcf)		Long-Term Strength Values		Adopted Long Term Strength		
Layer			N-va	lues	Tested	1	U (1)		.u ,	Adopted Short Term Parameters			ODOT GB-7 Co	orrelations	Parameters
2		PPR	Sowers	T and P	Values	Correlation	Tested	Correlation	Tested			N ₆₀ Value	Cohesion (psf)	phi (deg)	
	Max	N/A	N/A	N/A		110		125			Max	33	N/A	34	
	Min	N/A	N/A	N/A		95		115		S _u = 0 psf	Min	9	N/A	30	c' = 0 psf
Layer 1	Average	N/A	N/A	N/A		102		120		$\Phi = 32$ deg	Average	20	N/A	32	Φ' = 32 deg
	Std Dev	N/A	N/A	N/A		8		5			Std Dev	12	N/A	2	
GRANULAR FILL										Y _{dry} = 100 pcf					Y _{dry} = 100 pcf
	Avg + Std	N/A	N/A	N/A		109		125		Y _{moist} = 120 pcf	Avg + Std	32	N/A	34	Y _{moist} = 120 pcf
	Avg - Std	N/A	N/A	N/A		94		115			Avg - Std	7	N/A	29	
	Max	1000	525	931		115		110			Max	7	88	22	
	Min	500	525	931		95		110		S _u = 900 psf	Min	7	88	22	c' = 90 psf
Layer 2	Average	750	525	931		105		110		$\Phi = 0 \text{deg}$	Average	7	88	22	Φ' = 22 deg
	Std Dev	354	N/A	N/A		14		N/A			Std Dev	N/A	N/A	N/A	uog
COHESIVE FILL				,, .						Y _{dry} = 105 pcf		, , , ,			Y _{dry} = 105 pcf
	Avg + Std	1104	N/A	N/A		119		N/A			Avg + Std	N/A	N/A	N/A	$Y_{\text{moist}} = 110 \text{ pcf}$
	Avg - Std Avg - Std	396	N/A	N/A		91		N/A		r _{moist} – 110 pcr	Avg - Std Avg - Std	N/A	N/A	N/A	
	Max	2000	525	931	500	91	97	120	125		Max	7	88	22	
	Min	250	75	133	500	90	97	110	125	S _u = 500 psf	Min	1	15	15	c' = 25 psf
Layer 3	Average	861	281	499	500	92	97	113	125	$\Phi = 0 \text{deg}$	Average	4	48	19	Φ' = 16 deg
Layor o	Std Dev	614	159	282	000	3	51	5	120		Std Dev	2	26	3	
VERY SOFT TO SOFT COHESIVE		011	100	202		Ŭ		Ŭ		Y _{dry} = 100 pcf		2	20	Ũ	Y _{dry} = 100 pcf
	Avg + Std	1475	440	781		94		118		$Y_{moist} = 120$ pcf	Avg + Std	6	73	21	V - 400 maf
	Avg - Std	247	122	217		89		109			Avg - Std	2	22	16	r _{moist} – 120 pcr
	Max	N/A	N/A	N/A		105		105			Max	7	N/A	29	
	Min	N/A	N/A	N/A		100		120		S _u = 0 psf	Min	, Д	N/A	23	c' = 0 psf
Layer 4	Average	N/A	N/A	N/A		100		120		$\Phi = 25$ deg	Average	5	N/A	25	Φ' = 25 deg
Layer 4	Std Dev	N/A	N/A	N/A		3		3		+ 23 deg	Std Dev	2	N/A	3	÷ 20 dog
LOOSE GRANULAR		14/7 (14/7	14/7 (Ŭ		Ŭ		Y _{dry} = 100 pcf		2		Ũ	Y _{dry} = 100 pcf
	Avg + Std	N/A	N/A	N/A		105		125		$Y_{moist} = 120$ pcf	Avg + Std	7	N/A	28	$Y_{moist} = 120$ pcf
	Avg - Std	N/A	N/A	N/A		99		119		moist 120 per	Avg - Std	3	N/A	20	- moist
	Max	N/A	N/A	N/A		125		140			Max	51	N/A	38	
	Min	N/A	N/A	N/A		110		130		S _u = 0 psf	Min	20	N/A	30 32	c' = 0 psf
Layer 5	Average	N/A	N/A	N/A		117		135		$\Phi = 34 \text{ deg}$	Average	32	N/A	34	Φ' = 34 deg
Lujor	Std Dev	N/A	N/A	N/A		8		5			Std Dev	16	N/A	3	
MEDIUM DENSE TO DENSE	0.0 001	1 1// 1	1 1// 1	1.1/1		Ŭ		Ĭ		Y _{dry} = 115 pcf	0.0 001	10	11// 1	J	Y _{dry} = 115 pcf
GRANULAR	Avg + Std	N/A	N/A	N/A		124		140		$Y_{moist} = 135$ pcf	Avg + Std	49	N/A	38	$Y_{moist} = 135$ pcf
	Avg - Std Avg - Std	N/A	N/A	N/A		109		140			Avg + Stu Avg - Std	49 16	N/A	30 31	
	Max	4000	4000	4000		130		130			Max	33	200	27	
	Min	4000	4000	4000		130		140		S _u = 4000 psf	Min	33	200	27	c' = 200 psf
Layer 6	Average	4000	4000	4000		130		140		$\Phi = 0 \text{deg}$	Average	33	200	27	$\Phi' = 27$ deg
Layer	Std Dev	4000 N/A	4000 N/A	4000 N/A		N/A		140 N/A			Std Dev	N/A	200 N/A	N/A	÷ <u></u> ucy
HARD COHESIVE		1 1/7 3	11// 1			11// 1		110/13		Y _{dry} = 130 pcf	5.4 DEV	11/73	11// 1	1 1/7 1	Y _{dry} = 130 pcf
	Avg + Std	N/A	N/A	N/A		N/A		N/A			Avg + Std	N/A	N/A	N/A	V = 440 m af
	-									Y _{moist} = 140 pcf	-				$Y_{moist} = 140$ pcf
	Avg - Std	N/A	N/A	N/A		N/A		N/A			Avg - Std	N/A	N/A	N/A	

						.ayer 1	Ν	%		%	%	%	%	%			Di	%					rt-Term Cohe N-values	i <i>i</i>	Correlated LT Cohesion (psf)	phi	Midpoint Sample	Midpoint Sample	Correlated Dry Unit Wt. (pcf)	Correlated Moist Unit Wt. (pcf)	Correlated	Assumed Specific	Computed Void
			_				N ₆₀	Rec	HP	Gr	CS	FS	Silt	Clay	LL	PL	PI	WC				PPR	Sowers	T & P	per GB-7	(deg)	Depth (ft.)	Elevation (ft.)	per GB-7	per GB-7	U _c	Gravity (G _s)	Ratio (e)
	alues for Soil Strength C					Max	33	/8	N/A	56	10	1	22	5	25	18	1	17			Max	N/A	N/A	N/A	N/A	34	4.0	829.3	110	125	0.135	2.71	0.780
Re	eference	Value				Min	9	33	N/A	56	10	7	22	5	25	18	7	8			Min	N/A	N/A	N/A	N/A	30	2.0	826.8	95	115	0.135	2.71	0.537
HI P	PI (Sowers)	0.25				Average	20	59	N/A	56	10	7	22	5	25	18	7	11			Average	N/A	N/A	N/A	N/A	32	2.7	828.3	102	120	0.135	2.71	0.669
MD F	PI (Sowers)	0.175				Std Dev	12	23	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	5			Std Dev	N/A	N/A	N/A	N/A	2	1.2	1.3	8	5	N/A	0.00	0.123
LO P	PI (Sowers)	0.075																															
	T&P	0.133				Avg + Std	32	83	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	16			Avg + Std	N/A	N/A	N/A	N/A	34	3.8	829.6	109	125	N/A	2.71	0.792
-					L	Avg - Std	7	36	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	6			Avg - Std	N/A	N/A	N/A	N/A	29	1.5	827.0	94	115	N/A	2.71	0.547
																						Sho	rt-Term Cohe	ŭ)	Correlated LT Cohesion		Midpoint	Midpoint	Correlated Dry Unit Wt.	Correlated Moist Unit Wt.		Assumed	Computed
						Sample		%		%	%	%	%	%				%	ODOT				N-values		(pst)	phi	Sample	Sample	(pcf)	(pcf)	Correlated	Specific	Void
Alignment	Surface Elevation	Exploration ID	From		То	ID	N ₆₀	Rec	HP	Gr	CS	FS	Silt	Clay	LL	PL	PI	WC	Class.	Soil Type	Layer	PPR	Sowers	T & P	per GB-7	(deg)	Depth (ft.)	Elevation (ft.)	per GB-7	per GB-7	C _c	Gravity (G _s)	Ratio (e)
CR 25	830.8	B-001-0-22	1	-	2.5	SS-1	33	67	-	-	-	-	-	-	-	-	-	8	A-2-4	Granular	1	N/A				34	2.0	828.8	110	125		2.71	0.537
CR 25	830.8	B-001-0-22	3.5	-	4	SS-2A	17	78	-	56	10	7	22	5	25	18	7	17	A-2-4	Granular	1	N/A				31	4.0	826.8	100	120	0.135	2.71	0.691
CR 25	831.3	B-002-0-22	1	-	2.5	SS-1	9	33	-	-	-	-	-	-	-	-	-	9	A-1-b	Granular	1	N/A				30	2.0	829.3	95	115		2.71	0.780

				l	ayer 2	м	%		%	%	%	%	%				%					rt-Term Cohe N-values	Nº 7	Correlated LT Cohesion (psf)	phi	Midpoint Sample	Midpoint Sample	Correlated Dry Unit Wt. (pcf)	Correlated Moist Unit Wt. (pcf)	Correlated	Assumed Specific	Computed Void
2		_				N ₆₀	Rec	HP	Gr	CS	FS	Silt	Clay	LL	PL	PI	WC				PPR	Sowers	T & P	per GB-7	(deg)	Depth (ft.)	Elevation (ft.)	per GB-7	per GB-7	ل _د	Gravity (G _s)	Ratio (e)
Values for Soil Str					Max	7	89	1.0	12	6	16	45	21	24	19	5	14			Max	1000	525	931	88	22	5.0	827.3	115	110	0.126	2.72	0.787
Reference	Value				Min	7	89	0.5	12	6	16	45	21	24	19	5	14			Min	500	525	931	88	22	4.0	825.8	95	110	0.126	2.72	0.476
HI PI (Sowers)	0.25				Average	7	89	0.8	12	6	16	45	21	24	19	5	14			Average	750	525	931	88	22	4.5	826.6	105	110	0.126	2.72	0.631
MD PI (Sowers)	0.175				Std Dev	N/A	N/A	0.4	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A			Std Dev	354	N/A	N/A	N/A	N/A	0.7	1.1	14	N/A	N/A	0.00	0.220
LO PI (Sowers)	0.075																															
T&P	0.133				Avg + Std	N/A	N/A	1.1	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A			Avg + Std	1104	N/A	N/A	N/A	N/A	5.2	827.6	119	N/A	N/A	2.72	0.851
					Avg - Std	N/A	N/A	0.4	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A			Avg - Std	396	N/A	N/A	N/A	N/A	3.8	825.5	91	N/A	N/A	2.72	0.412
																					Sho	rt-Term Cohe	sion (psf)	Correlated LT Cohesion		Midpoint	Midpoint	Correlated Dry Unit Wt.	Correlated Moist Unit Wt.		Assumed	Computed
					Sample		%		%	%	%	%	%				%	ODOT				N-values		(psf)	phi	Sample	Sample	(pcf)	(pcf)	Correlated	Specific	Void
Alignment Surface Eleva	ation Exploration ID	From		То	ID	N ₆₀	Rec	HP	Gr	CS	FS	Silt	Clay	LL	PL	PI	WC	Class.	Soil Type	Layer	PPR	Sowers	Т&Р	per GB-7	(deg)	Depth (ft.)	Elevation (ft.)	per GB-7	per GB-7	Cc	Gravity (G _s)	Ratio (e)
CR 25 830.8	B-001-0-22	4	-	5	SS-2B	-	-	0.5	-	-			-		-	-		A-6a	Cohesive	2	500	N/A	N/A	-		5.0	825.8	115			2.72	0.476
CR 25 831.3	B-002-0-22	3.5	-	5	SS-2	7	89	1	12	6	16	45	21	24	19	5	14	A-4a	Cohesive	2	1000	525	931	88	22	4.0	827.3	95	110	0.126	2.72	0.787

																						Correlated				Correlated	Correlated							Strength Testir	ng					Cons	lidation Testin	1	
					.ayer 3														Short	-Term Cohes	ion (psf)	LT Cohesion		Midpoint	Midpoint	Dry Unit Wt.	Moist Unit Wt.		Assumed	Computed	Dry	Moist	Qu/UU	CU Eff.	CU Eff.	CU Total	CU Total	Dry	Moist				_
							%		%	%	% 9	6%			9	6				N-values		(psf)	phi	Sample	Sample	(pcf)	(pcf)	Correlated	Specific	Void	Unit Wt	Unit Wt	Su	c	phi	c	phi	Unit Wt	Unit Wt	t	aboratory Test	ed Values	
						N ₆₀	Rec	HP	Gr	CS	FS S	ilt Clay	LL	PL	PI W	IC			PPR	Sowers	T & P	per GB-7	(deg)	Depth (ft.)	Elevation (ft.)	per GB-7	per GB-7	C,	Gravity (G _s)	Ratio (e)	(pcf)	(pcf)	(psf)	(psf)	(deg)	(psf)	(deg)	(pcf)	(pcf)	eo	Cc	Cr Pc	σ。
Va	alues for Soil Strength	Correlation		[Max	7	100	2.0	8	10	29 5	7 36	29	19	10 3	3		Max	2000	525	931	88	22	15.0	824.3	95	120	0.171	2.72	0.886	97	125	500	N/A	N/A	N/A	N/A	101	115	1	0	0 2	N/A
Ref	eference	Value			Min	1	4	0.3	0	1	9 4	2 13	20	17	1 2	2		Min	250	75	133	15	15	7.0	816.3	90	110	0.090	2.72	0.787	97	125	500	N/A	N/A	N/A	N/A	101	115	1	0	0 2	N/A
HI PI	I (Sowers)	0.25			Average	4	69	0.9	1	4	21 5	0 24	25	18	6 2	6		Average	861	281	499	48	19	10.6	820.5	92	113	0.131	2.72	0.849	97	125	500	N/A	N/A	N/A	N/A	101	115	1	0	0 2	N/A
	PI (Sowers)	0.175			Std Dev	2	39	0.6	3	4	7 5	58	3	1	3 4	4		Std Dev	614	159	282	26	3	2.7	2.6	3	5	0.025	0.00	0.051	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A N/A	N/A
LO PI	I (Sowers)	0.075																																									
1	T&P	0.133			Avg + Std	6	108	1.5	4	8	27 5	6 31	27	19	9 3	0		Avg + Std	1475	440	781	73	21	13.3	823.1	94	118	0.156	2.72	0.900	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A N/A	N/A
					Avg - Std	2	30	0.2	-2	1	14 4	5 16	22	18	3 2	2		Avg - Std	247	122	217	22	16	7.9	817.9	89	109	0.106	2.72	0.797	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A N/A	N/A
																						Correlated				Correlated	Correlated							Strength Testir	ng					Cons	lidation Testin]	
																			Short	 Term Cohes 	ion (psf)	LT Cohesion		Midpoint	Midpoint	Dry Unit Wt.	Moist Unit Wt.		Assumed	Computed	Dry	Moist	Qu/UU	CU Eff.	CU Eff.	CU Total	CU Total	Dry	Moist				
					Sample		%		%	%	% 9	6%			9	6 ODOT				N-values		(psf)	phi	Sample	Sample	(pcf)	(pcf)	Correlated	Specific	Void	Unit Wt	Unit Wt	c.,		nhi	c	phi	Unit Wt	Unit Wt	1	aboratory Tes	ed Values	
Alignment	Surface Elevation	Exploration ID	From																									Contelated				0	Ju	L							•	Cr Pc	σ
CR 25			FIOIII	10	ID	N ₆₀	Rec	HP	Gr	CS	FS S	ilt Clay	LL	PL	PI W	/C Class.	Soil Type	Layer	PPR	Sowers	T & P	per GB-7	(deg)	Depth (ft.)	Elevation (ft.)	per GB-7	per GB-7	Cc	Gravity (G _s)	Ratio (e)	(pcf)	(pcf)	(psf)	(psf)	(deg)	(psf)	(deg)	(pcf)	(pcf)	eo	Cc		
	830.8	B-001-0-22	6	- 7.5	ID SS-3	N ₆₀ 1	Rec 67	HP 0.25	Gr -	CS -	FS S 	ilt Clay 	, LL	PL -	PI W	/C Class. 2 A-4b	Soil Type Cohesive	Layer 3	250	Sowers 300	T & P 532	per GB-7 50	(deg) 20					C _c			(pcf)		(psf)	(psf)	(deg)	(psf)	(deg)	(pcf)	(pcf)	eo	CC		
CR 25	830.8 830.8	B-001-0-22 B-001-0-22	6 8	- 7.5 - 10	ID SS-3 ST-4	N ₆₀ 4 ST	Rec 67 4	HP 0.25 -	Gr -	CS -	FS Si	ilt Clay 	, LL - -	PL - -	PI W - 2 - 2		Soil Type Cohesive Cohesive	2 Layer 3 3	250 N/A	Sowers 300 N/A	T & P 532 N/A	per GB-7 50	(deg) 20	Depth (ft.)	Elevation (ft.) 823.8		per GB-7	Cc	Gravity (G _s)	Ratio (e)	(pcf)		(psf)	(psf)	(deg)	(psf)	(deg)	(pcf)	(pcf)	e0	UC		
CR 25 CR 25			6 8 10	- 7.5 - 10 - 11.5	ID SS-3 ST-4 SS-5	N ₆₀ 1 4 ST 1	Rec 67 4 100	HP 0.25 - 0.25	Gr - - 0	- - 1	FS Si 26 5	ilt Clay 4 19	24	PL - - 17	PI W - 2 - 2 7 2		Soil Type Cohesive Cohesive Cohesive	Layer 3 3 3	250 N/A 250	300 N/A 75	T & P 532 N/A 133	per GB-7 50 15	(deg) 20 15	Depth (ft.)	Elevation (ft.)		per GB-7	0.126	Gravity (G _s) 2.72	Ratio (e) 0.886 0.886	(pcf)		(psf)	(psf)	(deg)	(psf)	(deg)	(pcf)	(pcf)	eo	CC		
CR 25 CR 25	830.8 830.8 830.8	B-001-0-22 B-001-0-22 B-001-0-22	6 8 10 12	- 7.5 - 10 - 11.5 - 13.5	ID SS-3 ST-4 SS-5 SS-6	N ₆₀ 1 4 ST 1 7	Rec 67 4 100 11	HP 0.25 - 0.25 0.25	Gr - - 0 8	CS - - 1 2	FS Si - · · 26 5 20 5	ilt Clay 4 19 7 13	24 23	PL - - 17 18	PI W - 2 - 2 7 2 5 2		Soil Type Cohesive Cohesive Cohesive Cohesive	Layer 3 3 3 3	250 N/A 250 250	300 N/A 75 525	T & P 532 N/A 133 931	per GB-7 50 15 88	(deg) 20 15 22	Depth (ft.)	Elevation (ft.) 823.8 821.8 819.8 819.8 817.8		per GB-7 110 110 120	C _c	Gravity (G _s) 2.72 2.72 2.72 2.72 2.72	Ratio (e) 0.886 0.886	(pcf)		(psf)	(psf)	(deg)	(psf)	(deg)	(pcf)	(pcf)	eo	CC		
CR 25 CR 25 CR 25	830.8 830.8 830.8 831.3	B-001-0-22 B-001-0-22 B-001-0-22 B-002-0-22	6 8 10 12 6	- 7.5 - 10 - 11.5 - 13.5 - 7.5	D SS-3 ST-4 SS-5 SS-6 SS-3	N ₆₀ 1 4 5T 1 7 4	Rec 67 4 100 11 100	HP 0.25 - 0.25 0.25 0.5	Gr - 0 8 -	- - 1 2	FS Si 26 5 20 5 	ilt Clay 4 19 7 13 	24 23	PL - 17 18 -	PI W - 2 - 2 7 2 5 2 - 3		Cohesive Cohesive Cohesive	Layer 3 3 3 3 3 3	250 N/A 250 250 500	300 N/A 75 525 300	T & P 532 N/A 133 931 532	per GB-7 50 15 88 50	(deg) 20 15 22 20	Depth (ft.) 7.0 9.0 11.0	Elevation (ft.) 823.8 821.8 819.8 817.8 824.3		per GB-7 110 110	С _с 0.126	Gravity (G _s) 2.72 2.72 2.72 2.72 2.72 2.72 2.72	Ratio (e) 0.886	(pcf)		(psf)	(psf)	(deg)	(psf)	(deg)					U	
CR 25 CR 25	830.8 830.8 830.8	B-001-0-22 B-001-0-22 B-001-0-22	6 8 10 12 6 7.5	- 7.5 - 10 - 11.5 - 13.5 - 7.5 - 9.5	D SS-3 ST-4 SS-5 SS-6 SS-3 ST-4	N ₆₀ 1 4 5T 1 7 4 ST	Rec 67 4 100 11 100 75	HP 0.25 - 0.25 0.25 0.5 1	Gr - 0 8 - 0	CS - 1 2 - 1	FS Si 26 5 20 5 9 5	ilt Clay 4 19 7 13 4 36	r LL - - 24 23 - 29	PL - 17 18 - 19	PI W - 2 - 2 7 2 5 2 - 3 10 2		Cohesive Cohesive Cohesive	Layer 3 3 3 3 3 3 3 3	250 N/A 250 250	300 N/A 75 525 300 N/A	T & P 532 N/A 133 931 532 N/A	per GB-7 50 15 88 50	(deg) 20 15 22 20	Depth (ft.) 7.0 9.0 11.0	Elevation (ft.) 823.8 821.8 819.8 819.8 817.8		per GB-7 110 110 120	С _с 0.126	Gravity (G _s) 2.72 2.72 2.72 2.72 2.72	Ratio (e) 0.886 0.886	(pcf) 97.4		(psf)	(psf)	(deg)	(psf)	(deg)					0.01 2.18	
CR 25 CR 25 CR 25 CR 25 CR 25 CR 25	830.8 830.8 830.8 831.3 831.3 831.3	B-001-0-22 B-001-0-22 B-001-0-22 B-002-0-22 B-002-0-22 B-002-0-22	6 8 10 12 6 7.5 9.5	- 7.5 - 10 - 11.5 - 13.5 - 7.5 - 9.5 - 11	D SS-3 ST-4 SS-5 SS-6 SS-3 ST-4 SS-5	N ₆₀ 1 5T 1 7 4 ST 3	Rec 67 4 100 11 100 75 100	HP 0.25 - 0.25 0.25 0.5 1 1	Gr - 0 8 - 0 1	CS - 1 2 - 1 2	FS Si 26 5 20 5 9 5 16 5	int Clay 4 19 7 13 4 36 0 31	r LL - - 24 23 - 29 26	PL - 17 18 - 19 19	PI W - 2 - 2 7 2 5 2 - 3 10 2 7 3		Cohesive Cohesive Cohesive	Layer 3 3 3 3 3 3 3 3 3	250 N/A 250 250	300 N/A 75 525 300 N/A 225	T & P 532 N/A 133 931 532 N/A 399	per GB-7 50 15 88 50 38	(deg) 20 15 22 20 19	Depth (ft.) 7.0 9.0 11.0 13.0 7.0 9.0 10.0	Elevation (ft.) 823.8 821.8 819.8 817.8 824.3 822.3 822.3 822.3		per GB-7 110 110 120	C。 0.126 0.117 0.171 0.144	Gravity (G _s) 2.72 2.72 2.72 2.72 2.72 2.72 2.72 2.7	Ratio (e) 0.886 0.886 0.787 0.886 0.886	(pcf) 97.4	(pcf)	(psf)	(psf)	(deg)	(psf)	(deg)					U	
CR 25 CR 25 CR 25 CR 25	830.8 830.8 831.3 831.3 831.3 831.3 831.3	B-001-0-22 B-001-0-22 B-002-0-22 B-002-0-22 B-002-0-22 B-002-0-22 B-002-0-22	6 8 10 12 6 7.5 9.5 11	- 7.5 - 10 - 11.5 - 13.5 - 7.5 - 9.5 - 11 - 12.5	D SS-3 ST-4 SS-5 SS-3 ST-4 SS-5 SS-6	N ₆₀ 1 4 5T 7 4 ST 3 1	Rec 67 4 100 11 100 75 100 33	HP 0.25 - 0.25 0.25 0.5 1 1 1	Gr - 0 8 - 0 1 0	CS - 1 2 - 1 2 8	FS Si 26 5 20 5 9 5 16 5 21 5	itt Clay 4 19 7 13 4 36 0 31 1 20	r LL - - 24 23 - 29 26 20	PL - 17 18 - 19 19 19	PI W - 2 - 2 7 2 5 2 - 3 10 2 7 3 1 2		Cohesive Cohesive Cohesive	Layer 3 3 3 3 3 3 3 3 3 3 3	250 N/A 250 250	Sowers 300 N/A 75 525 300 N/A 225 75	T & P 532 N/A 133 931 532 N/A 399 133	per GB-7 50 15 88 50 38 15	(deg) 20 15 22 20 19 15	Depth (ft.) 7.0 9.0 11.0 13.0 7.0 9.0 10.0 12.0	Elevation (ft.) 823.8 821.8 819.8 817.8 824.3 822.3 821.3 819.3		per GB-7 110 110 120 110	C _c 0.126 0.117 0.171 0.144 0.09	Gravity (G _s) 2.72 2.72 2.72 2.72 2.72 2.72 2.72 2.7	Ratio (e) 0.886 0.787 0.886 0.886 0.886	(pcf) 97.4	(pcf)	(psf)	(psf)	(deg)	(psf)	(deg)					U	
CR 25 CR 25 CR 25 CR 25 CR 25 CR 25	830.8 830.8 830.8 831.3 831.3 831.3	B-001-0-22 B-001-0-22 B-001-0-22 B-002-0-22 B-002-0-22 B-002-0-22	6 8 10 12 6 7.5 9.5 11 12.5	lo - 7.5 - 10 - 11.5 - 13.5 - 7.5 - 9.5 - 11 - 12.5 - 14	D SS-3 ST-4 SS-5 SS-6 SS-5 SS-6 SS-6 SS-7	N ₆₀ 1 4 5T 1 7 4 ST 3 1 6	Rec 67 4 100 11 100 75 100 33 100	HP 0.25 - 0.25 0.25 0.5 1 1 1 2	Gr - 0 8 - 0 1 0 0	CS - 1 2 - 1 2 8 10	FS Si 26 5 20 5 20 5 9 5 16 5 21 5 23 4	itt Clay 4 19 7 13 4 36 0 31 1 20 4 23	r LL - - 24 23 - 29 26 20 25	PL - 17 18 - 19 19 19 19	PI W - 2 - 2 7 2 5 2 - 3 10 2 7 3 1 2 6 2		Cohesive Cohesive Cohesive	Layer 3 3 3 3 3 3 3 3 3 3 3 3	250 N/A 250 250	Sowers 300 N/A 75 525 300 N/A 200 N/A 225 75 450	T & P 532 N/A 133 931 532 N/A 399 133 798	per GB-7 50 15 88 50 38 15 75	(deg) 20 15 22 20 19 15 21	Depth (ft.) 7.0 9.0 11.0 13.0 7.0 9.0 10.0	Elevation (ft.) 823.8 821.8 819.8 817.8 824.3 822.3 822.3 822.3		per GB-7 110 110 120 110 110	C。 0.126 0.117 0.171 0.144	Gravity (G _s) 2.72 2.72 2.72 2.72 2.72 2.72 2.72 2.7	Ratio (e) 0.886 0.886 0.787 0.886 0.886	(pcf) 97.4	(pcf)	(psf)	(psf)	(deg)	(psf)	(deg)					U	

Soil Strength Parameter Determination

						Layer 4	N	%		%	%	%	%	%				%					ort-Term Co N-val	ies	,	Correlated LT Cohesion (psf)	phi	Midpoint Sample	Midpoint Sample	Correlated Dry Unit Wt. (pcf)	Correlated Moist Unit Wt. (pcf)	Correlated	Assumed Specific	Computed Void
			_		_		N ₆₀	Rec	HP	Gr	CS	FS	Silt	Clay	LL	PL	PI	WC				PPR	Sower	ь Т б	δ P	per GB-7	(deg)	Depth (ft.)	Elevation (ft.)	per GB-7	per GB-7	C _c	Gravity (G _s)	Ratio (e)
v	alues for Soil Strength (Correlation				Max	7	100	N/A	44	13	48	29	7	31	18	13	29			Max	N/A	N/A	N	/A	N/A	29	18.0	816.8	105	125	0.189	2.72	0.697
R	eference	Value				Min	4	67	N/A	6	10	33	7	3	16	15	13	22			Min	N/A	N/A	N	/A	N/A	23	14.0	812.8	100	120	0.054	2.71	0.611
HI F	PI (Sowers)	0.25				Average	5	85	N/A	25	12	41	18	5	24	17	13	26			Average	N/A	N/A	N	/A	N/A	25	16.0	814.8	102	122	0.122	2.72	0.668
MD	PI (Sowers)	0.175				Std Dev	2	17	N/A	27	2	11	16	3	11	2	N/A	4			Std Dev	N/A	N/A	N	/A	N/A	3	2.0	2.0	3	3	0.095	0.01	0.050
LOI	PI (Sowers)	0.075																																
	T&P	0.133				Avg + Std	7	102	N/A	52	14	51	34	8	34	19	N/A	30			Avg + Std	N/A	N/A	N	/A	N/A	28	18.0	816.8	105	125	0.217	2.72	0.718
•						Avg - Std	3	69	N/A	-2	9	30	2	2	13	14	N/A	23			Avg - Std		N/A	N	/A	N/A	22	14.0	812.8	99	119	0.026	2.71	0.618
Alignment	Surface Elevation	Exploration ID	From		То	Sample ID	N ₆₀	% Rec	HP	% Gr	% CS	% FS	% Silt	% Clay	LL	PL	PI	% WC	ODOT Class.	Soil Type	Layer	Sh PPR	ort-Term Co N-val Sower	ies	,	Correlated LT Cohesion (psf) per GB-7	phi (deg)	Midpoint Sample Depth (ft.)	Midpoint Sample Elevation (ft.)	Correlated Dry Unit Wt. (pcf) per GB-7	Correlated Moist Unit Wt. (pcf) per GB-7	Correlated C _c	Assumed Specific Gravity (G _s)	Computed Void Ratio (e)
CR 25 CR 25 CR 25	830.8 830.8 830.8	B-001-0-22 B-001-0-22 B-001-0-22	13.5 15 17.5	-	15 16.5 19	SS-7 SS-8 SS-9	7 4 4	67 89 100	-	44 6 -	13 10 -	33 48 -	7 29 -	3 7 -	31 16 -	18 15 -	13 NP NP	22 28 29	A-2-6 A-4a A-4a	Granular NP SILT NP SILT	4 4 4	N/A N/A N/A			<u> </u>		29 23 23	14.0 16.0 18.0	816.8 814.8 812.8	105 100 100	125 120 120	0.189 0.054	2.71 2.72 2.72	0.611 0.697 0.697

					La	ayer 5		0/		9/	0/	0/	0/	0/				0/				Sho	rt-Term Cohes	u)	Correlated LT Cohesion	- 61	Midpoint	Midpoint	Correlated Dry Unit Wt.	Correlated Moist Unit Wt.	Correlated	Assumed	Computed
							N	% Rec	uп	70 Cr	% CS	70	70 Cilt	% Clov		ы	ы	% WC				PPR	N-values Sowers	T & P	(pst) per GB-7	phi (dog)	Sample Depth (ft.)	Sample Elevation (ft.)	(pcf) per GB-7	(pcf) per GB-7	Correlated	Specific Gravity (G _s)	Void Ratio (e)
			-			Max	60	400		40	04	FS	Silt	Clay	00	FL 00		04			Maria					(deg)	• • • •	()	•	•	0 000		
	alues for Soil Strength C					Max	51	100	N/A	49	21	19	18	6	20	20	N/A	21			Max	N/A	N/A	N/A	N/A	38	26.0	812.3	125	140	0.090	2.71	0.537
Re	ference	Value				Min	20	0	N/A	36	14	14	17	6	18	20	N/A	14			Min	N/A	N/A	N/A	N/A	32	19.0	805.3	110	130	0.072	2.71	0.353
HI PI	I (Sowers)	0.25				Average	32	56	N/A	43	18	17	18	6	19	20	N/A	17			Average	N/A	N/A	N/A	N/A	34	21.5	809.7	117	135	0.081	2.71	0.454
MD P	PI (Sowers)	0.175				Std Dev	16	42	N/A	9	5	4	1	0	1	N/A	N/A	3			Std Dev	N/A	N/A	N/A	N/A	3	3.1	3.1	8	5	0.013	0.00	0.093
LO P	I (Sowers)	0.075																															
	T&P	0.133				Avg + Std	49	97	N/A	52	22	20	18	6	20	N/A	N/A	20			Avg + Std	N/A	N/A	N/A	N/A	38	24.6	812.8	124	140	0.094	2.71	0.547
					L	Avg - Std	16	14	N/A	33	13	13	17	6	18	N/A	N/A	13			Avg - Std	N/A	N/A	N/A	N/A	31	18.4	806.6	109	130	0.068	2.71	0.360
																						Sho	rt-Term Cohes	sion (psf)	Correlated LT Cohesion		Midpoint	Midpoint	Correlated Dry Unit Wt.	Correlated Moist Unit Wt.		Assumed	Computed
						Sample		%		%	%	%	%	%				%	ODOT				N-values	ů)	(psf)	phi	Sample	Sample	(pcf)	(pcf)	Correlated	Specific	Void
Alignment	Surface Elevation	Exploration ID	From		То	ID	Ν.,	Rec	HP	Gr	ŝ	ES.	Silt	Clav		DI	DI	wc	Class.	Soil Type	Laver	PPR	Sowers	ТЯР	per GB-7	(deg)	Depth (ft.)	Elevation (ft.)	per GB-7	per GB-7	C	Gravity (G _s)	Ratio (e)
-		•	110111			UU	••60	Neu	11F	GI	00	13	Sint	Ciay	LL	FL.	F1	***	GI455.	Soli Type	Layer		JOWEIS	ICIF	per GB-7	(ueg)	Deptil (It.)	. ,	•	•	U _c	,	.,
CR 25	830.8	B-001-0-22	20	-	21.5	SS-10	51	67	-	49	14	14	17	6	18	NP	NP	15	A-1-b	Granular	5	N/A				38	21.0	809.8	125	140	0.072	2.71	0.353
CR 25	831.3	B-002-0-22	17.5	-	19.5	ST-9	ST	0	-	-	-	-	-	-	-	-	-	21	A-1-b	Granular	5	N/A					19.0	812.3				2.71	
CR 25	831.3	B-002-0-22	19.5	-	21	SS-10	20	100	-	36	21	19	18	6	20	20	NP	16	A-1-b	Granular	5	N/A				32	20.0	811.3	110	130	0.09	2.71	0.537
CR 25	831.3	B-002-0-22	25	-	26.5	SS-11	26	56	-	-	-	-	-	-	-	-	-	14	A-1-b	Granular	5	N/A				33	26.0	805.3	115	135		2.71	0.470

				La	yer 6															F	Short	-Term Cohes	ion (psf)	Correlated LT Cohesion		Midpoint	Midpoint	Correlated Dry Unit Wt.	Correlated Moist Unit Wt.		Assumed	Computed
						N ₆₀	% Rec	HP	% Gr	% CS	% FS	% Silt	% Clay	LL	Ы	PI	% WC				PPR	N-values Sowers	T & P	(psf) per GB-7	phi (deg)	Sample Depth (ft.)	Sample Elevation (ft.)	(pcf) per GB-7	(pcf) per GB-7	Correlated C.	Specific Gravity (G _s)	Void Ratio (e)
Values for Soil Stre	ength Correlation	٦			Max	33	100	4.0	0	3	2	60	35	30	19	11	17			Max	4000	4000	4000	200	27	26.0	804.8	130	140	0.180	2.72	0.306
Reference	Value				Min	33	100	4.0	0	3	2	60	35	30	19	11	17			Min	4000	4000	4000	200	27	26.0	804.8	130	140	0.180	2.72	0.306
HI PI (Sowers)	0.25				Average	33	100	4.0	0	3	2	60	35	30	19	11	17			Average	4000	4000	4000	200	27	26.0	804.8	130	140	0.180	2.72	0.306
MD PI (Sowers)	0.175				Std Dev	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A			Std Dev	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
LO PI (Sowers)	0.075																															
T&P	0.133				Avg + Std	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A			Avg + Std	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
					Avg - Std	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A			Avg - Std	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
																					Short	-Term Cohes	ion (nsf)	Correlated LT Cohesion		Midpoint	Midpoint	Correlated Dry Unit Wt.	Correlated Moist Unit Wt.		Assumed	Computed
Alignment Surface Elevat	tion Exploration ID	From		То	Sample ID	N ₆₀	% Rec	HP	% Gr	% CS	% FS	% Silt	% Clay	LL	PL	PI		ODOT Class.	Soil Type	Layer	PPR	N-values Sowers	T & P	(psf) per GB-7	phi (deg)	Sample Depth (ft.)	Sample Elevation (ft.)	(pcf) per GB-7	(pcf) per GB-7	Correlated C _c	Specific Gravity (G _s)	Void Ratio (e)
CR 25 830.8	B-001-0-22	25	-	26.5	SS-11	33	100	4	0	3	2	60	35	30	19	11	17	A-6a	Cohesive	6	4000	4000	4000	200	27	26.0	804.8	130	140	0.18	2.72	0.306

BEDROCK TESTING

ſ	Project	Exploration ID	Sample	Sample	Rock	Color	Moist Unit	Compre Stren			r Iulus	GS	1	Em (Hoek & Moduli	•	Lesser of Er vs Em	Project	Exploration	Rock T
	Hojeet	Exploration ib	Depth (ft)	•	Туре	color	Weight (pcf)		(MPa)		(MPa)	Range	USE	(GPa)	(psi)	(psi)	Toject	ID	NOCK
Ī	PER-CR25-2.00	B-001-0-20	35	NQ2-2	Sandstone	Gray	160.5	15,571	107.4	NA	-	45-55	50	10.0	1450377	1450377	PER-CR25-2.00	B-001-0-22	Sandst
	PER-CR25-2.00	B-002-0-20	40.2	NQ2-2	Sandstone	Gray	158.0	14,247	98.2	NA	-	50-60	55	13.2	1916912	1916912	PER-CR25-2.00	B-001-0-22	Sandst
																	PER-CR25-2.00	B-001-0-22	Sandst
																	PER-CR25-2.00	B-002-0-22	Sandst
																	PER-CR25-2.00	B-002-0-22	Sandst
					Sandstone	Maximum	160.5	15571		NA = Not A	vailable			Sandstone	Maximum	1916912			
						Minimum	158.0	14247]						Minimum	1450377			
						Average	159	14909]						Average	1683645			
						Std Dev	2	936	1						Std Dev	329890			
					Reco	mmended Value	160	14200						Recomn	nended Value	1650000			

GEOLOGICAL STRENGTH INDEX FOR JOINTED ROCKS (Hoek and Marinos, 2000) From the lithology, structure and surface conditions of the discontinuities, estimate the average value of GSI. Do not try to be too precise. Quoting a range from 33 to 37 is more realistic than stating that GSI = 35. Note that the table does not apply to structurally controlled failures. Where weak planar structural planes are present in an unfavourable orientation with respect to the excavation face, these will dominate the rock mass behaviour. The shear strength of surfaces in rocks that are prone to deterioration as a result of changes in moisture content will be reduced is water is present. When working with rocks in the fair to very poor categories, a shift to the right may be made for wet conditions. Water pressure is dealt with by effective stress analysis. STRUCTURE	SURFACE CONDITIONS	LERY GOOD ン Very rough, fresh unweathered surfaces	び G GOOD の Rough, slightly weathered, iron stained surfaces	 FAIR Smooth, moderately weathered and altered surfaces 	PDOR Slickensided, highly weathered surfaces with compact coatings or filings or angular fragments	VERY POOR Slickensided, highly weathered surfaces with soft clay coatings or fillings
INTACT OR MASSIVE - intact rock specimens or massive in situ rock with few widely spaced discontinuities	CES	90			N/A	N/A
BLOCKY - well interlocked un- disturbed rock mass consisting of cubical blocks formed by three intersecting discontinuity sets	DECREASING INTERLOCKING OF ROCK PIECES		70 60			
VERY BLOCKY- interlocked, partially disturbed mass with multi-faceted angular blocks formed by 4 or more joint sets	ERLOCKING		5			
BLOCKY/DISTURBED/SEAMY - folded with angular blocks formed by many intersecting discontinuity sets. Persistence of bedding planes or schistosity	REASING INT			40	20	
DISINTEGRATED - poorly inter- locked, heavily broken rock mass with mixture of angular and rounded rock pieces			\square		20	\square
LAMINATED/SHEARED - Lack of blockiness due to close spacing of weak schistosity or shear planes	۷.	N/A	N/A	//		10

Figure 10.4.6.4-1-Determination of GSI for Jointed Rock Mass (Hoek and Marinos, 2000)

GSI FOR HETEROGENEOUS ROCK MASSES SUCH AS FLYSCH (Marinos.P and Hoek. E, 2000) From a description of the lithology, structure and surface conditions (particularly of the bedding planes), choose a box in the chart. Locate the position in the box that corresponds to the condition of the discontinuities and estimate the average route of GSI from the contours. Do not attempt to be too precise. Quoting a range from 33 to 37 is more realistic than giving GSI = 35. Note that the Hoek-Brown oriterion does not apply to structurally controlled failures. Where unfavourably oriented continuous weak planar discontinuities are present, these will dominate the behaviour of the rock mass. The strength of some rock masses is reduced by the presence of groundwater and this can be allowed for by a slight shift to the right in the columns for fair, poor and very poor conditions. Water pressure does not change the value of GSI and it is dealt with by using effective stress analysis. COMPOSITION AND STRUCTURE	(Fredominiany veranity previous)
A. Thick bedded, very blocky sandstone The effect of peliic coatings on the bedding planes is minimized by the confinement of the rock mass. In shallow tunnels or slopes these bedding planes may cause structurally controlled instability.	70
B. Sand- stone with thin inter- layers of siltstone	
C,D, E and G - may be more or less folded than llustrated but this does not change the strength. Tectonic deformation, faulting and loss of continuity moves these categories to F and H.	ed
G. Undisturbed sitly or clayey shale with or without a few very thin sandstone layers	

-----> : Means deformation after tectonic disturbance

Figure 10.4.6.4-2—Determination of GSI for Tectonically Deformed Heterogeneous Rock Masses (Marinos and Hoek 2000)

Table 10.4.6.5-1—Estimation of E_m Based on GSI

Expression	Notes/Remarks
$E_m(GPa) = \sqrt{\frac{q_u}{100}} 10^{\frac{GSI-10}{40}} \text{for } q_u \le 100 \text{ MPa}$	Accounts for rocks with $q_u < 100$ MPa; notes q_u in MPa
$E_m(GPa) = 10^{\frac{GSI-10}{40}}$ for $q_u \le 100$ MPa	
$E_m = \frac{E_R}{100} e^{\frac{GSI}{21.7}}$	Reduction factor on intact modulus, based on <i>GSI</i>
Notes: E_r = modulus of intact rock, E_m = equivalent rock n strength, and 1 MPa = 2.09 ksf.	hass modulus, GSI = geological strengtl

BEDROCK QUALITY

	Depth	Range (ft.)	Thickness	Layer RQD	Weighted
Rock Type	From	То	(ft)	(%)	RQD*(^{Length} / _{Total Length})
Sandstone	30.5	35	4.5	22	3.4
Sandstone	35	40	5	65	11.2
Sandstone	40	45	5	73	12.6
Sandstone	30.5	35	4.5	22	3.4
Sandstone	35	45	10	85	29.3
		Sandstone	29	RQD SUM	60
		Maximum	10	85	
		Minimum	4.5	22	
		Average	5.8	53.4	
			Recomm	nended Value	50

LPILE Parameters

Project: PER-CR25-2.00 Client: ODOT Task: Generalized LPILE Parameters

 Calculated By:
 DCM
 Date:
 11/22/2022

 Checked By:
 DMV
 Date:
 11/28/2022

Soil Lateral Design Profile

<u>,</u>	on Lateral Design	rrome				
			Unit Wi	: (pcf)		
Soil Type	Cohesion (psf)	Phi (deg)	Total	Effective1	ε50	k
1 - Granular Fill	0	32	120	120	N/A	90
2 - Cohesive Fill	900	0	110	110	0.01	N/A
3 - Very Soft to Soft Cohesive	500	0	120	120	0.02	N/A
4 - Loose Granular	0	25	120	57.6	N/A	20
5 - Medium Dense to Dense Granular	0	33	135	72.6	N/A	60
6 - Hard Cohesive	4000	0	140	77.6	0.005	N/A

1. Effective unit weights to be applied below groundwater table (assumed at El 815 in recommended design profile)

ε50 tables from LPile Technical Manual

Table 3-2 Representative Values of 850 for Soft to Stiff Clays

Consistency of Clay	\$50
Soft	0.020
Medium	0.010
Stiff	0.005

Table 3-4 Representative Values of \$50 for Stiff to Hard Clays

Average Undrained Shear Strength	B50
50-100 kPa (1,000-2,000 psf)	0.007
100-200 kPa (2,000-4,000 psf)	0.005
200-400 kPa (4,000-6,000 psf)	0.004

k tables from LPile Technical Manual

Table 3-6 Representative Values of k for Fine Sand Below the Water Table for Static and Cyclic

Recommended k	Relative Density				
Recommended k	Loose	Medium	Dense		
MN/m ³	5.4	16.3	34		
(pci)	(20.0)	(60.0)	(125.0)		

 Table 3-7 Representative Values of k for Fine Sand Above Water Table for Static and Cyclic

 Loading

Recommended k	Relative Density					
Recommended k	Loose	Medium	Dense			
MN/m ³	6.8	24.4	61.0			
(pci)	(25.0)	(90.0)	(225.0)			

Scour Analysis Parameters

SC		Project: Client: Task:	PER-CR25-2.00 ODOT Scour Analysis	Calculated B Checked B	•	Date: Date:	11/23/2022 11/28/2022
<u>Reference</u>				<u>Reference</u>			
ODOT Geote	chnical Design Ma	anual (GDM)		Location and	Design Manual - Volum	ne 2 : Drainage Design	(LDv2)
Critical Shea	r Stress (Tc)			Erosion Categ	ory (EC)		
Cohesive Soi	ls (GDM 1302.1)			Cohesive Soils	s (LDv2 C1008.10.4)		
Tc =	^{-2.0} (PI/100) ^{1.3} ((qu) ^{0.4}					
	Tc (Pa) =	Critical Shear Stress	5	EC =	4.5 - (3 / 1.07 ^{PI})	where 1.5 <u><</u> E	C < <u>4.5</u>
	w (dim) =	Water Content				PI = Plasticity	index (dim)
	F (dim) =	Fraction of Fine Par	ticles (< 75 um)				
	PI (dim) =	Plasticity Index (use	e min PI = 4)	Granular Soils	(LDv2 C1008.10.4)		
	qu (psf) =	Unconfined Compr	essiive Test	EC =	1.2 [1.83333+log (D	50)]	
		c (psf) = 1/2 qu	cohesion			where 1 <u><</u> EC -	<u><</u> 6
	a =	0.01	unit conversion				
			0.01 = U.S. Customary units				
			0.1 = S.I.				
Granular Soil	ls (GDM1302.2)						
Tc (Pa) =	D50 (mm)						
	Tc (nsf) =	Critical Shear Stress	s (Pa)				

Tc (psf) =Critical Shear Stress (Pa)D50mean particle grain size (mm), > or = 0.2 mm

								Unconfined	Compressive				
Boring No.	Sample	Elevati	on (ft)	D50	Moisture	Fines (< 75um)	Plasticiy	Stren	gth, Qu	Unit conversion	Tc (Pa)	Tc (psf)	EC (dim)
		Тор	Bottom	(mm)	w (dim)	F (dim)	PI (dim)	Qu (psf) ¹	Qu (Pa)	a (dim)			
B-001-0-22	SS-5	820.79	- 819.39	0.0259	29	73	24	1000	47880.3	0.1	7.382	0.154	3.91
	SS-6	818.7	- 817.29	0.0329	25	70	23	1000	47880.3	0.1	8.642	0.180	3.87
	SS-7	817.29	- 815.79	0.9635	22	10	31	Granular	Granular	0.1	0.964	0.020	2.18
	SS-8	815.79	- 814.29	0.1258	28	36	16	Granular	Granular	0.1	0.126	0.003	1.12
B-002-0-22	SS-5	821.78	- 820.28	0.0133	33	81	19	1000	47880.3	0.1	5.181	0.108	3.67
	SS-6	820.28	- 818.78	0.0253	24	71	19	1000	47880.3	0.1	7.526	0.157	3.67
	SS-7	818.78	- 817.28	0.0282	22	67	19	1000	47880.3	0.1	7.975	0.167	3.67
	SS-8	817.28	- 815.78	0.0266	22	66	18	1000	47880.3	0.1	7.214	0.151	3.61

1. See soil parameter determination sheet summary

2. 1 Pa = 0.0208854 psf

3. dim = dimensionless

F

Project: Client: Task:

PER-CR25-2.00 ODOT Scour Analysis

Calculated By: DCM Checked By: DMV

abutments to scour.

scour, and the susceptibility of the piers and

Date: Date: 11/23/2022 11/28/2022

then it must be considered cohesive for determination of critical shear stress, regardless of the tested plasticity. For soils tested as non-plastic (NP) or with PI < 4, assume PI = 4 for use in the cohesive soil critical shear stress equation.

1302.1 Cohesive Soils

Determine scour critical shear stress of a cohesive soil through publication FHWA-HRT-15-033, Figure 54, "Equation. Predictive relation for critical shear stress,"

$$\tau_c = \alpha \left(\frac{w}{F}\right)^{-2.0} \left(\frac{PI}{100}\right)^{1.3} q_u^{0.4}$$

Where:

 $\tau_c = Critical shear stress, psf (Pa)$

w = Water content, dimensionless

- F = Fraction of fine particles (< 75µm) by mass, dimensionless
- PI = Plasticity index, dimensionless
- $q_u =$ Unconfined compressive strength, psf (Pa)
- α = Unit conversion constant, 0.01 in U.S. customary units and 0.1 in S.I.

For example, if w = 11, F = 60, PI = 7, and $q_u = 6500 \text{ psf} = 311,200 \text{ Pa}$, then:

$$\tau_c = 0.1 \times \left(\frac{11}{60}\right)^{-2.0} \times \left(\frac{7}{100}\right)^{1.3} \times (311,200)^{0.4} = 14.77 \ Pa = 0.308 \ psf.$$

1302.2 Granular Soils

Determine scour critical shear stress of a granular soil as a function of the mean particle grain size using the equation in HEC 18 Figure 4.6, "Critical shear stress vs. particle grain size (Briaud et al. 2011)."

 $\tau_c (Pa) = D_{50} (mm)$

Where:

```
\tau_c = Critical shear stress (Pa)
```

 D_{50} = mean particle grain size (mm), ≥ 0.2 mm

1302.3 Bedrock

Determine scour critical shear stress of a non-scour resistant bedrock by rearranging HEC 18 Equations 7.38 for 'Critical Stream Power' and 7.39 'Approach Flow Stream Power' to derive the critical shear stress for non-scour resistant bedrock as follows:

$$\tau_c = \rho \left(\frac{1000 \ K^{0.75}}{7.853 \ \rho}\right)^{2/3}$$

July 2022 Page 13-2 OHIO DEPARTMENT OF TRANSPORTATION Geotechnical Design Manual

LD2 – 1000 Drainage Design Criteria	July 2022
dimensionless, where $1 \le EC \le 6$ Where:	soil with D_{50} = 23 mm, with a bed shear stress of 53.18 Pa:
EC = Erosion Category, dimensionless	EC = 1.2 (1.83333 + log(23)) = 3.83
For cohesive soils:	$\alpha = 13/3.83^{0.309} - 7.1363 = 1.45$
$C = 4.5 - \frac{3}{1.07^{Pl}}$, where $1.5 \le EC \le 4.5$,	$ \beta = 7.377777 \cdot [(1 - (3.83 - 4.5)^2/3.57^2) 10.377777^2]^{0.5} \\ = -2.82 $
Pl= Plasticity Index, dimensionless For granular soils:	Erosion Rate, $\dot{z} = 10^{(1.45 \log(53.18) - 2.82)} = 10^{-0.3177} = 0.48 \text{ mm/hr} = 0.019 \text{ in/hr}$
$EC = 1.2 [1.83333 + log(D_{50})]$, where $1 \le EC \le 6$, $D_{50} =$ mean particle grain size (mm), $\ge 0.1 \text{ mm}$	
To estimate the erosion rate of a bedrock material, creat if as a cohesionless soil. Divide the spacing between horizontal discontinuities by a value of 2.5 to develop an equivalent D_{50} value.	For example; if a material has a spacing between horizontal discontinuities of 9 inches, divide by 2.5 = 3.6 inches = 91 mm; use 91 mm as the equivalent D_{50} value.
Consider scour depth in the design of the substructures and the location of the bottom of footings and minimum tip elevations for piles and drilled shafts.	
All major rehabilitation work requires a scour evaluation.	For existing bridges, the scour evaluation may consist of determining what the bridge is founded
Provide hand calculations and/or software output along with a narrative of findings and recommended scour countermeasures in the STS. Ignore scour countermeasures in the prediction of scour depths. Include a statement regarding the susceptibility of the stream banks and flow line to	on. For example, with bridge rehabilitation, noting that the bridge is founded on spread footings on scour resistant bedrock would constitute the scour evaluation.